Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Способ получения монокристаллов сплава вольфрам-тантал. Тантала сплавы

    Способ получения монокристаллов сплава вольфрам-тантал. Тантала сплавы

    Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и изготовливают штабики путем гидростатического прессования смеси при давлении 140÷160 МПа в течение 3÷5 минут. Далее проводят термическую обработку штабиков в вакууме с остаточным давлением Р≤8·10-3 Па при температуре до 800°С. Затем продолжают обработку штабиков в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800÷1000°С в течение не менее двух часов. После чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10-3 Па при температуре Т≥1500°С в течение не менее 2 часов с последующим охлаждением. Нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/час. Монокристаллический слиток выращивают посредством бестигельной плавки с электронно-лученвым нагревом и заканчивают четной плавкой с затравлением на конец слитка нечетной плавки. Обеспечивается получение монокристаллов сплава вольфрам - тантал с повышенной степенью однородности распределения тантала по длине слитка. 2 з.п. ф-лы, 1 табл.

    Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам-тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП).

    Известен способ получения сплавов монокристаллов молибдена и вольфрама с помощью легирования проволокой или прутком, используемых в качестве лигатуры и закрепляемых на боковой поверхности исходной поликристаллической заготовки (Ястребков А.А., Афанасьев Н.Г., Репий В.А., Смирнов В.П. «Разработка жаропрочных монокристаллических сплавов на основе молибдена и вольфрама», Цветные металлы, 2007, №11, с.10-18).

    Недостаток известного способа заключается в получении значительной неоднородности распределения легирующей примеси по длине монокристаллического слитка. Это в полной мере относится к монокристаллам сплава вольфрам-тантал, т.к. проволока или пруток плавятся раньше, чем вольфрам и лигатура попадают в расплав неравномерными порциями.

    Наиболее близким к изобретению является принятый в качестве прототипа способ получения монокристаллов тугоплавких металлов с использованием штабиков, полученных методом порошковой металлургии. В известном способе штабики получают путем гидростатического прессования предварительно смешанных исходных порошков, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электронно-лучевым нагревом. Качество получаемых монокристаллов во многом определяется составом и количеством примесей, присутствующих в исходном штабике. Основной примесью в порошках тугоплавких металлов (соответственно и в штабиках) является кислород, присутствующий в виде различных оксидов металлов. Для их удаления штабики подвергают термической обработке в осушенном водороде или водородосодержащей среде. Это приводит к снижению содержания кислорода примерно на два порядка. Затем штабики переплавляют для получения поликристаллических заготовок, из которых на установке ЭБЗП выращивают монокристаллы тугоплавких металлов, в том числе и сплавов вольфрам-тантал (Савицкий Е.М., Бурханов Г.С., Поварова Е.Б. и др. «Тугоплавкие металлы и сплавы», М.: Металлургия, 1986, с.32-85).

    Однако известный способ не позволяет получить монокристаллы сплава вольфрам-тантал с однородным распределением легирующего компонента (тантала) по длине монокристалла из-за невозможности получения штабиков вольфрама, легированного танталом, соответствующего качества. Вольфрам практически не взаимодействует с водородом, в то время как тантал интенсивно его поглощает с образованием широкой области твердых растворов и гидридных фаз. При термообработке это приводит к растрескиванию и частичному разрушению штабиков.

    Технической задачей изобретения является получение монокристаллов сплава вольфрам-тантал с однородным распределением тантала по длине слитка.

    Технический результат изобретения заключается в получении бездефектных штабиков сплава вольфрам-тантал и в повышении степени однородности распределения тантала по длине слитка.

    Решение поставленной задачи и получение технического результата достигается тем, что в способе получения монокристаллов сплава вольфрам-тантал, включающем изготовление штабиков путем гидростатического прессования предварительно смешанных исходных порошков, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электронно-лучевым нагревом, согласно изобретению гидростатическое прессование осуществляют при давлении 140÷160 МПа в течение 3÷5 минут, термическую обработку штабиков сначала проводят в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре до 800°С, а затем продолжают обработку в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800-1000°С в течение не менее двух часов, после чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре Т≥1500°С в течение не менее 2 часов с последующим охлаждением, причем нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/ч, а процесс выращивания монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки.

    В способе получения монокристаллов сплава вольфрам-тантал в качестве восстановительной среды может быть использована аргоно-водородная смесь с содержанием водорода 5÷7% об.

    В качестве исходных компонентов может использоваться порошок вольфрама со средним размером зерна (по Фишеру) 1-5 мкм и порошок тантала со средним размером зерна 10-15 мкм. При использовании порошков с разными размерами частиц плотность упаковки и распределение исходных компонентов будут более равномерными, поскольку мелкие частицы заполняют пустоты между крупными.

    Известно, что реакция водорода с танталом происходит при относительно низких (Т≤600°С) температурах. Осуществив нагрев заготовки до Т=800°С в условиях вакуума, дальнейшую термообработку при более высокой температуре можно проводить в водородосодержащей среде без каких-либо негативных последствий. В результате многочисленных экспериментов было установлено, что применение этого метода решило проблему целостности штабиков при проведении восстановительного отжига.

    Формование длинномерных штабиков (отношение длины к диаметру ≥10) обычно проводится методом гидростатического прессования. Величина давления прессования ограничивается, с одной стороны, сохранением межчастичных контактов после снятия нагрузки, т.е. целостностью самого сформированного штабика, а с другой стороны, образованием сколов и трещин при больших удельных нагрузках. Кроме того, для эффективности восстановительных реакций в процессе спекания поверхность металлического «скелета» должна быть полностью доступна для газовой атмосферы, иначе говоря, не должно быть объемов с закрытой пористостью и, следовательно, полученная прессовка не должна иметь плотность более 60% от теоретической.

    С учетом этих ограничений экспериментально было установлено, что давления прессования для порошков с размером зерна от 1 до 5 мкм составляет от 140 до 160 МПа. При этом плотность полученных штабиков варьировалась от 50 до 55% от теоретической.

    Для предотвращения взрывоопасных ситуаций и снижения затрат на обеспечение безопасных условий труда спекание штабиков проводили в аргоно-водородной смеси с малыми добавками (от 5 до 7%) водорода.

    При высоких температурах спекания (выше 1500°С) в штабиках происходит значительная усадка, при этом пористость уменьшается до значений от 20 до 25%, что сопровождается переходом от открытой пористости до закрытой. Закрытые (изолированные) поры непроницаемы для газовой среды и это приводит к неполному восстановлению пор и окружающих частиц. В процессе выращивания монокристаллов эти участки выделяют летучие окислы, что приводит к возникновению электрических разрядов и «отравлению» катода нагревательного узла электронно-лучевой пушки установки бестигельной зонной плавки. Поэтому восстановительный отжиг необходимо проводить в области температур, не приводящих к образованию закрытых пор. Экспериментально установлено, что выдержка штабиков при температуре от 800 до 1000°С в аргонно-водородной среде в течение 2 часов приводит к полному устранению большинства окисных примесей, практически не изменяя исходной пористости.

    Реализацию предлагаемого способа получения монокристаллов сплава вольфрам-тантал рассмотрим на примере сплава вольфрам-тантал, содержащего 3 мас.% тантала.

    В качестве исходных компонентов использовали порошки вольфрама и тантала. Вольфрамовый порошок имел средний размер зерна (по Фишеру) от 1 до 3 мкм, порошок тантала состоял из более крупных частиц - от 10 до 15 мкм. Для увеличения текучести исходные порошки сушили в вакуумном сушильном шкафу ШСВ-65 при 300°С в течение 2 часов, после чего в расчетных количествах засыпали в емкость смесителя С 2,0 «Турбула» и перемешивали смесь в течение от 4 до 6 час. Подготовленную таким образом смесь засыпали в эластичную оболочку и прессовали в гидростате 4,2/5,3 МН при давлении жидкости от 140 до 160 МПа в течение от 3 до 5 минут. Прессованные штабики представляли собой цилиндры диаметром от 18 до 30 мм и длиной от 140 до 240 мм, которые затем помещали в электропечь типа СШВЛ 1,25/25 или СНВЭ 1.31/20. Печь вакуумировали до давления Р=8·10 -3 Па и поднимали температуру до Т=800°С со скоростью от 300 до 400°С/час, выдерживали при этой температуре 30 мин и заполняли камеру печи аргонно-водородной смесью до избыточного давления Р=0,2 ати. Затем температуру поднимали до Т=1000°С и выдерживали в течение 2 час. После выдержки печь снова вакуумировали до остаточного давления Р=8·10 -3 Па и поднимали температуру со скоростью от 300 до 400°С/ч до необходимых от 1500-1800°С и выдерживали при конечной температуре 2 ч. Охлаждение печи проводили с той же скоростью, что и нагрев. Полученные штабики переплавляли в поликристаллическую заготовку методом бестигельной зонной плавки. Диаметр заготовки задавали равным диаметру монокристалла или на 10-20% меньше. Выполнение данного требования отвечает, в числе прочих, условиям стабильного роста монокристалла. В процессе роста монокристалла сплава вольфрам-тантал формируется определенная картина распределения тантала по длине слитка. Равновесный коэффициент распределения тантала в вольфраме равен 0,8. Это означает, что в процессе роста монокристалла концентрация тантала будет от начало слитка к концу возрастать. Для уменьшения эффекта неоднородного распределения примеси по длине слитка необходимо провести второй или любой четный процесс роста, затравляясь каждый раз на конец слитка нечетного процесса. В этом случае будет наблюдаться процесс выравнивания концентрации примеси (тантала) по длине слитка.

    В обоснование достижения технического результата были выращены по два слитка монокристаллов сплава W+3 мас.% Та по следующим технологическим схемам:

    1 - по известной из литературы технологии легирования монокристалла проволокой или прутком;

    2 - по предлагаемой технологии с использованием штабиков, полученных методом порошковой металлургии;

    3 - по предлагаемой технологии с использованием штабиков, полученных методом порошковой металлургии, когда выращивание монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки. В этом случае будет наблюдаться дальнейший процесс выравнивания концентрации примеси (тантала) по длине слитка.

    Концентрацию тантала измеряли спектральным методом (Вольфрам. Методы спектрального анализа. ГОСТ 14339.5-9) на шайбах толщиной 5 мм, отрезанных через каждые 50 мм, начиная с нижнего торца слитка. Результаты измерений по каждому из трех способов представлены в таблице.

    Таблица
    Концентрация тантала, мас.%
    0 мм 50 мм 100 мм 150 мм 200 мм 250 мм 300 мм 350 мм 400 мм
    1 2.5 2,6 2,8 3,0 3,2 3,3 3,3 3,4 3,5
    2 2,6 2,8 2,9 2,9 3,0 3,0 3,1 3,1 3,3
    3 3,2 3,2 3,1 3,0 2,9 2,9 3,0 3,0 3,1

    Как видно из данных таблицы, разброс концентрации тантала между максимальными и минимальными значениями в монокристалле сплава вольфрам-тантал для известного способа составляет более 25%, а для предложенного способа - 10%.

    1. Способ получения монокристаллов сплава вольфрам-тантал, включающий изготовление штабиков путем гидростатического прессования предварительно смешанных исходных компонентов, термическую обработку штабиков в восстановительной среде, спекание их с последующим переплавом в поликристаллическую заготовку и выращивание из нее монокристаллического слитка посредством бестигельной зонной плавки с электроннолучевым нагревом, отличающийся тем, что гидростатическое прессование осуществляют при давлении 140÷160 МПа в течение 3÷5 мин, термическую обработку штабиков сначала проводят в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре до 800°С, а затем продолжают обработку в восстановительной среде при избыточном давлении не менее 0,2 ати и температуре 800÷1000°С в течение не менее 2 ч, после чего осуществляют процесс спекания штабиков в вакууме с остаточным давлением Р≤8·10 -3 Па при температуре Т≥1500°С в течение не менее 2 ч с последующим охлаждением, причем нагрев и охлаждение в условиях вакуума и восстановительной среды осуществляют со скоростью 300÷400°С/ч, а процесс выращивания монокристаллического слитка заканчивают четной плавкой с затравлением на конец слитка нечетной плавки.

    2. Способ получения монокристаллов сплава вольфрам-тантал по п.1, отличающийся тем, что в качестве восстановительной среды используют аргоно-водородную смесь с содержанием водорода 5÷7 об.%.

    3. Способ получения монокристаллов сплава вольфрам-тантал по п.1, отличающийся тем, что в качестве исходных компонентов используют порошок вольфрама со средним размером зерна 1-5 мкм и порошок тантала со средним размером зерна 10-15 мкм.

    Похожие патенты:

    Изобретение относится к технологии восстановления поверхности монокристаллической или полученной направленной кристаллизацией металлической детали, имеющей толщину Ws менее 2 мм, в которой лазерный луч и поток металлического порошка, имеющего ту же природу, что и металлическая деталь, подают на деталь с помощью сопла для получения, по меньшей мере, одного слоя монокристаллического или подвергшегося направленной кристаллизации от детали металла, при этом лазерный луч имеет мощность «Р» и перемещается вдоль детали со скоростью «v», в котором луч лазера и поток порошка подают на деталь соосно и отношение P/v находится в определенном диапазоне.

    Специальные сплавы тантала в промышленности используют-ся для применения при высоких температурах, для изготовле-ния резцов, имеющих высокие скорости резания, и для изготов-ления устойчивой против действия кислот аппаратуры. Сплавы с высокой температурой плавления содержат от L до40 А 1а в комбинации с различными количествами Mo, W, С, Mn, Ni, v и Si В указанных сплавах тантал может замещать полностью или часть вольфрама и молибдена. Тантал в этих случаях вво-дится в сплав в виде чистого металла.Как важная составная часть в определенных сплавах алю-миния (типа цералюмина) широко применяется ниобии. Коли-чество его, вводимое в сплавы, обычно невелико и составляет О 05—0 1 % действие его состоит в модифицировании спла-вов и предотвращении образования хрупкой железо-алюминие-вой составляющей.Ниобий применяется так же, как легирующая добавка к не которым медным сплавам. Добавление ниобия в количестве до 1,5% к меди, латуни или бронзе в значительной мере обеспечи-вает сохранение твердости при повышенных температурах.Карбид тантала вместе с карбидом вольфрама и карбидом титана входит в состав некоторых марок твердых металлорежу-щих сплавов, а также в состав литых карбидов вольфрама.Известны твердые сплавы на основе только одного карбида тантала с никелем или кобальтом в качестве цементирующей добавки.Добавление карбида тантала в состав твердых сплавов суще-ственно повышает их режущие свойства. Так, по данным добавление к твердому сплаву ВКб 2% позволяет повысить ско-рость обработки чугуна на 10%, а добавление 4% ТаС к титановольфрамокобальтовым твердым сплавам марок ТК повышает скорость обработки ими сталей на 20%. Добавки карбида тан-тала к титановольфрамокобальтовым твердым сплавам повышают также их окалиностойкость. Сообщается также, что режу-щие инструменты с карбидом тантала обладают лучшей теплопроводностью, чем инструменты других типов, и что термическое расширение даже при использовании в жестких условиях очень мало.Литые сплавы с добавлением карбида тантала (и ниобия) противостоят химической коррозии и износоустойчивы.Хотя большое количество тантала и ниобия применяется в виде различных сплавов, применение этих металлов в чистом виде имеет не менее важное значение. Одними из главнейших областей их применения являются электровакуумная техника и химическая промышленность.Начало широкого применения металлического тантала свя-зано с электровакуумной техникой, с производством радиотех-нической, радиолокационной и рентгеновской аппаратуры.Впервые тантал начал применяться в качестве нитей нака-ливания электроосветительных ламп, заменив угольные нити, откуда затем был вытеснен вольфрамом. Электрические лампы с нитями накаливания из тантала в ряде случаев все же оказа-лись более пригодными, чем лампы с вольфрамовыми нитями, например на железных дорогах, где более упругие нити из тан-тала лучше противостоят вибрациям и толчкам. Однако такие лампы могут работать только на постоянном токе. При исполь-зовании переменного тока происходит постепенная рекристалли-зация танталовых нитей в так называемых криотронах—сверхпроводящих элементах например для вычислительных машин. Криотрон представ-ляет собой отрезок охлаждаемой танталовой проволоки (диа-метром 0,2 мм) длиной 3 см, на который наматывается один слои изолированной ниобиевой проволоки диаметром 80 мк танталовая проволока служит сверхпроводником. Периодиче-ски через ниобиевую обмотку пропускается ток, создающий магнитное поле, разрушающее сверхпроводимость тантала. Та-ким образом, с помощью криотрона можно размыкать ток, не-зависимо от направления последнего. При применении тантала (или ниобия), в качестве материала анода в кислых электролитах он вступает в реакцию с выделяю-щимся из растворов кислородом, образуя устойчивую окисную пленку. Вследствие этого, прохождение тока прекращается до тех пор, пока не будет повышено напряжение, что влечет за со-бой образование нового равновесного состояния. Этот процесс продолжается приблизительно до 200 в, после чего пленка начи-нает разрушаться.Способность тантала образовывать устойчивые анодные окисные пленки в сочетании с его пассивностью к кислым элек-тролитам позволяет применять этот металл в электролитических выпрямителях и конденсаторах. Миниатюрные танталовые кон-денсаторы широко используются для передаточных радиостанции, радарных установок и других различных электронных схемтанталовые выпрямители используются для железнодорож-ных сигналов, в телефонных коммутаторах, противопожарных и других сигнальных системах.В качестве выпрямителя переменного тока низкого напря-жения может быть использован и ниобий.Танталовые конденсаторы могут быть изготовлены двух ти-пов: с прокладками из листового тантала и с применением по-ристого тантала. В первом случае используются кислые элек-тролиты на основе гликолей, обладающие большой вязкостью во втором жидкие, обладающие высокой электропроводно-стью, например водный раствор хлорида лития.В качестве катодов для прокладочных конденсаторов приме-няются медные ленты, покрытые серебром, во втором случае сам сосуд является электродом; изготавливается он из серебра при неполярном конденсаторе из тантала.Особенностью танталовых конденсаторов являются их ма-лые размеры. Танталовые сплавы применяются в промышленности повсеместно.

    Купить тантал по привлекательным ценам вы можете перейдя по ссылкам ниже.

    1. Мы предлагаем следующую продукцию из тантала: танталовый круг, танталовый лист, танталовую проволоку, танталовую ленту.

    Непрерывные ряды твёрдых растворов тантал образует с металлами, имеющими изоморфную кристаллическую структуру, примерно тот же размер атома и близко расположенными в ряду электроотрицательности, например с Nb, W, Mo, V, β-Ti и др. Ограниченные твёрдые растворы и металлиды образуются при большем различии в размерах атома и электроотрицательности, например с Al, Au, Be, Si, Ni. С Li, К, Na, Mg и некоторыми др. элементами тантал практически не образует ни твёрдых растворов, ни соединений.

    Т. с. характеризуются высокими механическими свойствами при обычной температуре, жаропрочностью, коррозионной устойчивостью; они более экономичны, чем чистый тантал. Очень важны Т. с. с ниобием, наиболее близкие по свойствам к танталу, которые могут заменить дефицитный тантал во многих областях его применения. Особый интерес представляют жаропрочные Т. с. Тантал наряду с вольфрамом, молибденом и ниобием относят к «большой четвёрке» металлов, наиболее перспективных для создания на их основе высокотемпературных конструкционных материалов для самолётов, ракет, космических кораблей и т. п. Обычно тантал легируют W, Mo, V, Nb, Ti, Zr, Hf, Re, Cr, С и др. элементами. Из многих жаропрочных Т. с. наиболее важны сплавы с вольфрамом. Так, предел прочности при растяжении сплава с 10% W равен (Мн/м 2) 1265 (20 °С), то есть намного больше, чем для тантала; 661 (980 °С); 148 (1430 °С); 84 (1650 °С), или соответственно 126,5; 66,1; 14,8 и 8,4 кгс/мм 2 , относительное удлинение при тех же температурах 4,0; 4,2; 17,0 и 33,0%. Этот сплав более пластичен, чем вольфрам, не уступает ему по прочности и превосходит по сопротивлению окислению при температурах до 2800 °С; из него изготовляют детали камеры сгорания и сопла реактивных двигателей, передние кромки оперения самолётов. Для тех же целей применяют сплав с 8% W и 2% Hf, имеющий по сравнению со всеми другими деформируемыми жаропрочными сплавами наибольшую удельную прочность при высоких температурах. Пластичный сплав с 8% W и 2,5% Re предложен для изготовления нагревателей промышленных печей, теплозащитной обшивки и деталей ядерных силовых установок космических аппаратов.

    В электронной технике применяют Т. с. с высокими электрическим сопротивлением и термоэмиссионными свойствами, содержащие до 7,5% W. По коррозионной стойкости Т. с., как правило, не могут конкурировать с чистым танталом, но иногда легированием удаётся повысить коррозионную стойкость металла; например, Т. с., содержащие более 18% W, почти не корродируют в 20%-ной плавиковой кислоте.

    В производстве высокотемпературных и др. материалов перспективны бериллид тантала (в конструкциях авиационной и космической техники для изготовления деталей, работающих при температурах около 1500 °С), бориды тантала (покрытие листов тантала, контактирующих с расплавленными ураном и кальцием), силициды, нитриды и карбиды (материал оболочки тепловыделяющих элементов (См. Тепловыделяющий элемент)) тантала. Карбид TaC - важная составная часть некоторых металлокерамических твёрдых сплавов; например, в Японии в 1972 из общего количества потребленного тантала, равного 83т, 40т израсходовано в твердосплавной промышленности, а в США в 1973 из 600 т тантала 85-90 т использовано в виде карбида в производстве твёрдых сплавов. Ферротанталониобий иногда применяют для присадки в некоторые стали с целью предотвращения межкристаллитной коррозии и улучшения др. свойств, но из-за дефицитности тантала в этом случае предпочтительнее феррониобий. Дефицитность и относительно высокая стоимость тантала препятствуют его широкому применению и в виде Т. с.

    Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967.

    О. П. Колчин.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Смотреть что такое "Танталовые сплавы" в других словарях:

      Сплавы на основе тантала с добавками ниобия, вольфрама, циркония, гафния и др. элементов. Характеризуются высокой жаропрочностью и корроз. стойкостью в агрессивных в жидкометаллич. средах; на воздухе стойки до 500 оС, для работы при высоких темп… … Большой энциклопедический политехнический словарь

      Танталовые сплавы Энциклопедический словарь по металлургии

      ТАНТАЛОВЫЕ СПЛАВЫ - сплавы на основе Та с добавками Nb, W, Mo, V и других элементов. Характеризуются высокой жаропрочностью и коррозионной стойкостью в различных средах. Применяются для изготовления сопел ракет, деталей реактивных двигателей и т. д … Металлургический словарь

      Тантал (латинское Tantalum), Та, химический элемент V группы периодической системы Менделеева; атомный номер 73, атомная масса 180,948; металл серого цвета со слегка свинцовым оттенком. В природе находится в виде двух изотопов: стабильного 181Та… …

      I Тантал в древнегреческой мифологии лидийский или фригийский царь, сын Зевса, отец Пелопса и Ниобы (См. Ниоба). За то, что разгласил тайны олимпийцев, похитил с пира богов нектар и амбросию и, пригласив богов на пир, угостил их блюдом,… … Большая советская энциклопедия

      index - 01 ОБЩИЕ ПОЛОЖЕНИЯ. ТЕРМИНОЛОГИЯ. СТАНДАРТИЗАЦИЯ. ДОКУМЕНТАЦИЯ 01.020 Терминология (принципы и координация) 01.040 Словари 01.040.01 Общие положения. Терминология. Стандартизация. Документация (Словари) 01.040.03 Услуги. Организация фирм,… … Стандарты Международной организации по стандартизации (ИСО)

      - (France), Французская Pеспубликa (Republique Francaise), гос во в Зап. Eвропе. Пл. 551,0 тыс. км2. Hac. 55,6 млн. чел. (1987). Cтолица Париж. B адм. отношении разделена на 96 департаментов. B состав Ф. входят заморские департаменты… … Геологическая энциклопедия

      Полезные ископаемые в недрах Земли, запасы которых оценены по геологическим данным. Месторождения полезных ископаемых распределены в земной коре неравномерно. Большинство видов минерального сырья представлено рудами, состоящими из минералов, т.е … Энциклопедия Кольера

    Кроме производства различных высококачественных наша компания также выпускает полуфабрикаты и детали из тугоплавких металлов . Материалы соответствуют российскому ГОСТ и обладают улучшенными механическими и физическими свойствами.

    Тугоплавкие металлы: молибден, вольфрам, тантал, вольфрамовая медь, титан и сплавы на его основе, тяжелые металлы.

    Вольфрам AERIS 1700 - самый тугоплавкий и технически чистый металл, имеющий самую высокую точку плавления и очень высокую плотность. Обладает высокой степенью твердостью, антикоррозийными свойствами. Производится в виде проволоки, прутков, лент, листов.

    Вольфрам-медь AERIS 1705 - данный сплав сочетает в себе высокое сопротивление вольфрама износу и отличную электропроводность меди. Поставляется в виде прутков, плит.

    Молибден AERIS 1710 - данный металл имеет схожие свойства с вольфрамом (Высокая температура плавления, высокий уровень усталости при повышенных температурах (в вакууме или в среде защитных газов до 2.000 К/1.727 С), низкое значение теплового расширения). Производится в виде проволоки, прутка, ленты, листа, трубы.

    Тантал AERIS 1715 - данный сплав используется для химического оборудования из-за его выдающихся свойств: хорошая обрабатываемость материала и химическое сопротивление.

    Титан AERIS 1725 - данный металл принадлежит группе легких металлов. Два самых используемых свойства этого металла - это коррозионная устойчивость к окислительным средам и самое высокое соотношение предела прочности к массе из всех металлических материалов. Свойства титана могут быть адаптированы к различным применениям посредством использования различных легирующих элементов. Титан и его сплавы обладают высоким растяжением, прочностью и сцеплением.

    Титан-Цирконий-Молибден AERIS 1720 - данный сплав обладает таким свойствами как высокая точка плавления, высокий предел прочности, тепловое растяжение, хорошая термопроводность и химическое сопротивление. Поставляется в виде прутков, листов.

    Поставка осуществляется как за российские рубли со склада, так и за Евро с заключением прямого контракта с заводом-изготовителем. При долгосрочном сотрудничестве возможна отсрочка платежа 100%.

    Тантал - это разумный выбор для всех сфер применения, где требуется высокая коррозионная стойкость. Хотя тантал и не относится к благородным металлам, он сравним с ними по своей химической устойчивости. Кроме того, тантал легко поддается формовке даже при температуре ниже комнатной благодаря своей объемноцентрированной кубической кристаллической структуре. Высокая коррозионная стойкость тантала делает его ценным материалом для использования в самых различных химических средах. Мы используемый наш "неподатливый" материал, например, для теплообменников для сектора приборостроения, загрузочных поддонов для строительства печей, имплантатов для медицинской техники и компонентов конденсаторов для электронной промышленности.

    Гарантированная чистота.

    Вы можете быть уверенными в качестве нашей продукции. Мы изготавливаем наши продукты из тантала сами - от металлического порошка до готового продукта. В качестве исходного материала мы используем только чистейший танталовый порошок. Так мы гарантируем вам чрезвычайно высокую чистоту материала.

    Мы гарантируем качество чистоты спеченного тантала - 99,95 % (чистота металла без ниобия). Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

    Элемент Типичная макс. величина [мкг] Гарантированное макс. значение
    [мкг]
    Fe 17 50
    Mo 10 50
    Nb 10 100
    Ni 5 50
    Si 10 50
    Ti 1 10
    W 20 50
    C 11 50
    H 2 15
    N 5 50
    O 81 150
    Cd 5 10
    Hg* -- 1
    Pb 5 10

    Мы гарантируем качество чистоты тантала полученного путем плавки - 99,95 % (чистота металла без ниобия) Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

    Элемент Типичное значение макс. (µg/g) Гарантированное значение (µg/g)
    Fe 5 100
    Mo 10 100
    Nb 19 400
    Ni 5 50
    Si 10 50
    Ti 1 50
    W 20 100
    C 10 30
    H 4 15
    N 5 50
    O 13 100
    Cd -- 10
    Hg* -- 1
    Pb -- 10

    Присутствие Сr(VI) и органических примесей исключено производственным процессом (многократная термообработка при температуре выше 1000 °C в атмосфере высокого вакуума) * исходная величина

    Материал с особыми талантами.

    Насколько уникальны свойства нашего тантала, настолько же специфичны и сферы его применения в промышленности. Ниже мы кратко представим вам две из них:

    Индивидуально подобранные химические и электрические свойства.

    Благодаря чрезвычайно мелкой микроструктуре тантал является идеальным материалом для производства ультратонкой проволоки с безупречной, исключительно чистой поверхностью для использования в танталовых конденсаторах. Мы можем с высокой степенью точности определять химические, электрические и механические свойства такой проволоки. Так, мы обеспечиваем нашим клиентам индивидуально подобранные и стабильные свойства компонентов, которые мы постоянно развиваем и улучшаем.

    Превосходная стойкость и высокая пластичность в холодном состоянии.

    Превосходная стойкость в сочетании с отличной формуемостью и свариваемостью делают тантал идеальным материалом для теплообменников. Наши танталовые теплообменники исключительно стабильны и устойчивы в целом ряду агрессивных сред. Обладая многолетним опытом обработки тантала, мы также можем изготовлять продукты сложной геометрии, точно отвечающие вашим требованиям.

    Чистый тантал или все же сплав?

    Мы оптимальным образом подготавливаем наш тантал к любым применениям. При помощи различных легирующих элементов мы можем изменять следующие свойства вольфрама:

    • физические свойства (например, температура плавления, давление пара, плотность, электропроводность, теплопроводность, тепловое расширение, теплоемкость)
    • механические свойства (например, прочность, механизм разрушения, пластичность)
    • химические свойства (например, коррозионная стойкость, травимость)
    • обрабатываемость (например, машинная обработка, формуемость, свариваемость)
    • структура и характеристики рекристаллизации (например, температура рекристаллизации, склонность к появлению хрупкости, эффект старения, размер зерен)

    И это еще не все: используя наши специальные технологии производства, мы можем изменять различные другие свойства тантала в широком диапазоне. Результат: две различные технологии производства тантала и сплавы, обладающие различными свойствами, точно отвечающие требованиям конкретного применения.

    Тантал, полученный спеканием (TaS).

    Чистый тантал, полученный спеканием, и чистый тантал, полученный плавкой, обладают следующими общими характеристиками:

    • высокая температура плавления, составляющая 2 996 °C
    • превосходная пластичность в холодном состоянии
    • рекристаллизация при температуре от 900 °C до 1 450 °C (в зависимости от степени деформации и чистоты)
    • превосходная стойкость в водных растворах и расплавах металлов
    • сверхпроводимость
    • высокий уровень биологической совместимости

    Когда предстоит чрезвычайно тяжелая работа, поможет наш тантал, полученный спеканием: благодаря используемому нами методу порошковой металлургии тантал, полученный спеканием , (TaS) обладает чрезвычайно мелкозернистой структурой и высокой чистотой. В связи с этим материал и отличается высочайшим качеством поверхности и хорошими механическими свойствами.

    Для использования в конденсаторах мы рекомендуем одну из разновидностей нашего тантала с чрезвычайно высоким качеством поверхности (TaK ). Такой тантал используется в виде проволоки в танталовых конденсаторах. Высокую емкость, низкий ток утечки и низкое сопротивление можно гарантировать только тогда, когда используется проволока, не имеющая дефектов и примесей.

    Тантал, полученный плавкой (TaM).

    Не всегда требуется лучшее из лучшего. Тантал, полученный плавкой , (TaM), как правило, более экономичен в производстве, чем тантал, полученный спеканием, а его качества достаточно для многих сфер применения. Однако этот материал не такой мелкозернистый и однородный, как тантал, полученный спеканием. Просто свяжитесь с нами. Мы будем рады проконсультировать вас.

    Стабилизированный тантал (TaKS).

    Мы легируем наш спеченный стабилизированный тантал кремнием , что позволяет предотвратить рост зерен даже при высокой температуре. Это делает наш тантал пригодным для использования даже при крайне высокой температуре. Мелкозернистая микроструктура остается стабильной даже после отжига при температуре до 2 000 °C. Этот процесс позволяет сохранить превосходные механические свойства материала, такие как его пластичность и прочность. Стабилизированный тантал в виде проволоки или листов идеально подходит для производства танталовых анодов методом спекания или для использования в секторе строительства печей.

    Тантал-вольфрам (TaW) отличается хорошими механическими свойствами и превосходной коррозионной стойкостью. Мы добавляем в чистый вольфрам от 2,5 до 10 масс. % вольфрама. Хотя получаемый сплав в 1,4 раза прочнее , чем чистый тантал, он так же легко поддается формовке при температуре до 1 600 °C. Наш материал оптимально подходит для теплообменников и нагревательных элементов, используемых в сфере производства химического оборудования.

    Хорош во всех отношениях. Характеристики тантала.

    Тантал относится к группе тугоплавких металлов . Тугоплавкие металлы имеют температуру плавления выше температуры плавления платины (1 772 °C). Энергия, связывающая отдельные атомы, чрезвычайно высока. Высокая температура плавления тугоплавких металлов сочетается с низким давлением пара. Тугоплавкие металлы также отличаются высокой плотностью и низким коэффициентом теплового расширения.

    В периодической системе химических элементов тантал находится в том же периоде, что и вольфрам. Как и вольфрам, тантал имеет чрезвычайно высокую плотность - 16.6 г/см3. Однако, в отличие от вольфрама, тантал становится хрупким при обработке в водородной среде. По этой причине материал изготовляется в высоком вакууме.

    Тантал, несомненно, является наиболее устойчивым из тугоплавких металлов . Он устойчив во всех кислотах и основаниях и обладает крайне специфическими свойствами:

    Свойства
    Атомное число 73
    Атомная масса 180.95
    Температура плавления 2 996 °C / 3 269 K
    Температура кипения 6 100 °C / 6 373 K
    Атомный объем 1.80 ·  10-29 [м3]
    Давление пара при 1 800 °C при 2 200 °C 5 · 10-8 [Пa] 7 · 10-5 [Пa]
    Плотность при 20 °C (293 K) 16.60 [г/см3]
    Кристаллическая структура объемноцентрированная кубическая
    Постоянная кристаллической решетки 3.303 · 10-10 [м]
    Твердость при 20 °C (293 K) деформированный рекристаллизованный 120 - 220 80 - 125
    Модуль упругости при 20 °C (293 K) 186 [ГПa]
    Коэффициент Пуассона 0.35
    Коэффициент линейного теплового расширения при 20 °C (293 K) 6.4 · 10-6 [м/(м·K)]
    Теплопроводность при 20 °C (293 K) 54 [Вт/(м K)]
    Удельная теплоемкость при 20 °C (293 K) 0.14 [Дж/(г·K)]
    Электропроводность при 20 °C (293 K) 8 · 10 6
    Удельное электрическое сопротивление при 20 °C (293 K) 0.13 [(Ом·мм2)/м]
    Скорость звука при 20 °C (293 K) Продольная волна
    Поперечная волна
    4 100 [м/с] 2 900 [м/с]
    Работа выхода электрона 4.3 [эВ]
    Сечение захвата тепловых нейтронов 2.13 · 10-27 [м2]
    Температура рекристаллизации (продолжительность отжига: 1 час) 900 - 1 450 °C
    Сверхпроводящий (температура перехода) < -268.65 °C / < 4.5 K

    Теплофизические свойства.

    Тугоплавкие металлы, как правило, имеют низкий коэффициент теплового расширения и относительно высокую плотность .. Это касается и тантала. Хотя теплопроводность тантала ниже, чем у вольфрама и молибдена, материал имеет более высокий коэффициент теплового расширения, чем многие другие металлы.

    Теплофизические свойства тантала изменяются при изменении температуры. На графиках ниже показаны кривые изменения наиболее важных переменных:

    Механические свойства.

    Даже малые количества таких элементов, образующих твердый раствор внедрения, как кислород, азот, водород и углерод, могут изменить механические свойства тантала. Кроме того, для изменения его механических свойств используются такие факторы, как чистота металлического порошка, технология производства (спекание или плавка), степень холодной обработки и тип термической обработки.

    Как и вольфрам и молибден, тантал имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода тантала составляет -200 °C, что значительно ниже комнатной температуры. Благодаря этому металл крайне легко поддается формовке . В процессе холодной обработки повышается предел прочности и твердость металла, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

    Термостойкость материала ниже, чем у вольфрама, но сравнима с термостойкостью чистого молибдена. Для повышения термостойкости мы добавляем в наш тантал тугоплавкие металлы, например, вольфрам.

    Модуль упругости тантала ниже, чем у вольфрама и молибдена, и сравним с модулем упругости чистого железа. Модуль упругости снижается при повышении температуры.

    Механические свойства.

    Благодаря высокой пластичности тантал оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Тантал с трудом поддается машинной обработке . Стружка плохо отделяется. По этой причине мы рекомендуем использовать стружкоотводные ступеньки. Тантал отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

    У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

    Химические свойства.

    Поскольку тантал устойчив в химических веществах любого типа, этот материал часто сравнивают с драгоценными металлами. Однако, с точки зрения термодинамики, тантал представляет собой недрагоценный металл, который, тем не менее, может образовывать устойчивые соединения с различными элементами. На воздухе тантал образует очень плотный слой оксида , (Ta2O5) который защищает основной материал от химического воздействия. Таким образом, слой оксида делает тантал коррозионностойким .

    При комнатной температуре тантал не является устойчивым только в следующих неорганических веществах: концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и растворы кислот, содержащие ионы фтора. Щелочные растворы, расплавленный гидроксид натрия и гидроксид калия также оказывают химическое воздействие на тантал. В то же время материал устойчив в водном растворе аммиака. Если тантал подвергается химическому воздействию, водород проникает в его кристаллическую решетку, и материал становится хрупким. Коррозионная стойкость тантала постепенно снижается при повышении температуры.

    Тантал является инертным по отношению ко многим растворам. Однако, если тантал подвергается воздействию смешанного раствора, то его коррозионная стойкость может снизиться, даже если он устойчив в отдельных компонентах такого раствора. У вас есть сложные вопросы по коррозии? Мы будем рады помочь вам, используя наш опыт и нашу собственную лабораторию по исследованию коррозии.

    Коррозионная стойкость в воде, водных растворах и в среде неметаллов
    Вода Горячая вода < 150 °C стойкий
    Неорганические кислоты Соляная кислота < 30 % до 190 °C Серная кислота < 98 % до 190 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 150 °C стойкий стойкий стойкий нестойкий стойкий
    Органические кислоты Уксусная кислота < 100 % до 150 °C Щавелевая кислота < 10 % до 100 °C Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C
    Щелочные растворы Гидроксид натрия < 5 % до 100 °C Гидроксид калия < 5 % до 100 °C Аммиачные растворы < 17 % до 50 °C Карбонат натрия < 20 % до 100 °C стойкийстойкийстойкийстойкий
    Соляные растворы Хлорид аммония < 150 °C Хлорид кальция < 150 °C Хлорид железа < 150 °C Хлорат калия < 150 °C Биологические жидкости < 150 °C Сульфат магния < 150 °C Нитрат натрия < 150 °C Хлорид олова < 150 °C стойкийcтойкийстойкийстойкийстойкийстойкийстойкийстойкий
    Неметаллы Фтор Хлор < 150 °C Бром < 150 °C Йод < 150 °C Сера < 150 °C Фосфор < 150 °C Бор < 1 000 °C нестойкийстойкийcтойкийстойкийстойкийстойкийстойкий

    Тантал устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Однако этот материал подвержен воздействию Al, Fe, Be, Ni и Co.

    Коррозионная стойкость в расплавах металлов
    Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
    Бериллий нестойкий Магний стойкий при температуре < 1 150 °C
    Свинец стойкий при температуре < 1 000 °C Натрий стойкий при температуре < 1 000 °C
    Кадмий стойкий при температуре < 500 °C Никель нестойкий
    Цезий стойкий при температуре < 980 °C Ртуть стойкий при температуре < 600 °C
    Железо нестойкий Серебро стойкий при температуре < 1 200 °C
    Галлий стойкий при температуре < 450 °C Висмут стойкий при температуре < 900 °C
    Калий стойкий при температуре < 1 000 °C Цинк стойкий при температуре < 500 °C
    медь стойкий при температуре < 1 300 °C Олово стойкий при температуре < 260 °C
    Кобальт нестойкий

    Когда неблагородный металл, например, тантал, вступает в контакт с благородными металлами, например, платиной, очень быстро возникает химическая реакция. В связи с этим необходимо учитывать реакцию тантала с другими материалами, присутствующими в системе, особенно при высокой температуре.

    Тантал не вступает в реакцию с инертными газами. По этой причине инертные газы высокой чистоты могут использоваться в качестве защитных газов. Однако при повышении температуры тантал активно вступает в реакцию с кислородом или воздухом и может поглощать большое количество водорода и азота. Это делает материал хрупким. Устранить эти примеси позволяет отжиг тантала в высоком вакууме. Водород исчезает при температуре 800 °C, а азот - при 1 700 °C.

    В высокотемпературных печах тантал может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с танталом. При контакте с графитом может образовываться карбид тантала, что приводит к повышению хрупкости тантала. Хотя обычно тантал можно легко комбинировать с другими тугоплавкими металлами, например, молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния.

    В таблице ниже указана коррозионная стойкость материала по отношению к термостойким материалам, используемым при строительстве промышленных печей. Указанные предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100-200 °C ниже.

    Коррозионная стойкость по отношению к термостойким материалам, используемым при строительстве промышленных печей
    Оксид алюминия стойкий при температуре < 1 900 °C Молибден стойкий
    Оксид бериллия стойкий при температуре < 1 600 °C Нитрид кремния стойкий при температуре < 700 °C
    Гексагональный. нитрид бора стойкий при температуре < 700 °C Оксид тория стойкий при температуре < 1 900 °C
    Графит стойкий при температуре < 1 000 °C вольфрам стойкий
    Оксид магния стойкий при температуре < 1 800 °C Оксид циркония стойкий при температуре < 1 600 °C