Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Металлические пены (курсовая работа). Металлические пены

    Металлические пены (курсовая работа). Металлические пены

    Конструкторы давно мечтали о «легком металле», пла­вающем в воде. В настоящее в рюмя разработана и освое­на промышленностью технология пенометалла или, как его еще называют, «металлической пены».

    В принципе процесс изготовления пенометалла прост. Жидкий металл пропускается через шнековое устройство, напоминающее мясорубку, при этом в него замешивается порошок гидрида титана. При определенной температу­ре, которая всегда выше температуры плавления метал­ла, гидрид разлагается, выделяется большое количество

    Пузырьков водорода, вспенивающих жидкий металл. Вы­свободившийся при реакции титан «усваивается» алюми­нием или другим металлом, служащим основой. Вспенен­ная газированная масса быстро разливается в формы и застывает. Образуется ячеистый металл с объемной массой 0,16-0,6 г/см3. Поры в ячеистой массе в основном закрытые, поэтому вспененные металлы плавают в воде.

    Разработана получения металлов сетчато­го строения, их структура отличается высокой открытой (сообщающейся) пористостью. Такие пенометаллы назы­ваются губчатой металлической пеной. В этом случае жидкий металл осаждается на подложку из полнуретано - вой пены.

    В качестве основы пенометаллов применяются, главным образом, алюминий, магний и их сплавы и дру­гие металлы: цинк, свинец, железо, медь, никель, сталь и сплавы этих металлов с магнием, титаном.

    Хотя пенометаллы в своей основе являются металли­ческими, по свойствам они значительно отличаются от исходных металлов; это новые материалы.

    Пенометаллы обладают целым комплексом превос­ходных свойств: объемная масса у них ниже, чем у древе­сины, а прочность значительно выше; они отлично по­глощают энергию удара, легко обрабатываются реза­нием, в них можно вбивать крепежные детали, склеивать их с другими материалами, например со стеклом, пласти­ками, фанерой. Металлические «пены» красивые, со своеобразным трехмерным декоративным рисунком, про­являют хорошие акустические свойства. Пенометаллы хо­рошо свариваются, имеют высокие демпфирующие свой­ства (от немецкого Dampfer -гаситель", способность мате­риалов гасить механические колебания, например вибра­цию, или снижать резонансные колебания), повышенную коррозионную стойкость. Прочность изделия из металли­ческой пены значительно повышается при поверхностной обработке-прокатке, ковке, штамповке.

    Металлические пены отличаются неожиданным и уди­вительным свойством-они не плавятся даже при темпе-: ратуре, соответствующей точке плавления исходного сплава. Так, технические сплавы алюминия плавятся при < 560-640°С. Пеноалюминий нагревали в электропечи при! температуре 1400°С, однако он не расплавился; его вы­держивали 100 ч при температуре 1482°С, он сильно " окислился, но его прочность и размеры деталей остались прежними. Пенометаллы можно многократно нагревать до высоких температур и быстро охлаждать, при этом свойства их изменяются незначительно; другие пеноси - стемы не выдерживают подобных испытаний.

    Предполагается, что изделия из пенометаллов найдут широкое применение, и прежде всего в строительстве:" перегородки, двери, потолочные перекрытия, облицо­вочные материалы, материалы для полов, декоративные плиты и многое другое. Уже сейчас некоторые отрасли промышленности не могут обходиться без металлической пены, например ракетостроение и космическая техника, в которых пористые металлы применяются для изгото­вления защитных экранов от радиации, стеллажей и упа­ковки для электронных машин и приборов. Пенометаллы используют также для изготовления ударопрочных дета - j лей автомобилей (передние части радиаторов, опоры для - спинок задних сидений, рулевое управление, панели для 4 передних и задних спинок и др.), некоторых деталей ] самолетов, железнодорожных вагонов (прежде всего, pe-j фрижераторов), лифтов, контейнеров и т. д. Как правило,", из пеноматериалов производят заготовки круглого и пря­моугольного сечения, фасонные полуфабрикаты.

    Освоено производство гибких листов больших размен ров из металлической пены с регулируемыми значениями пористости. Для этого в пенометалле содержание возду­ха по объему доводят до 93-98%, затем полученный ма­териал прокатывают в листы.

    Дальнейшее совершенствование технологии и сниже­ние стоимости пенометаллов значительно расширит области применения металлической пены.

    Мы рассказали о многих областях техники, науки, здравоохранения, где хрупкий воздушный пузырек уско­ряет технологические процессы, спасает от аварий, гасит пожары, устраняет пыль, грязь и шум, защищает окру­жающую среду и лечит людей.

    Можно было бы привести еще десятки подобных при­меров. Мы ограничимся тем, что в заключение просто перечислим еще несколько областей, где пена «трудится».

    Разработан специальный процесс крашения тканей и пряжи в пене. В результате удалось сократить расход воды почти в 40 раз, а расход красителей - на 15%, умень­шить металлоемкость и габариты оборудования.

    Искусственное вспенивание массы при гидрировании значительно ускоряет и упрощает процесс получения пи­щевых жиров и специальных технических масел.

    При розливе напитков, детского питания, культу - ральных сред (микробиологическая промышленность) и других продуктов длительного хранения поточные ли­нии оборудуются дозаторами пены. Она заполняет сво­бодное пространство над уровнем жидкости непосред­ственно перед герметизацией емкостей. Так создается простая и надежная преграда для микроорганизмов и окисляющего действия воздуха.

    Освоено производство кормовых дрожжей на неболь­ших животноводческих фермах в малогабаритных аппа­ратах простой конструкции с использованием пены. Она позволила отказаться от интенсивного перемешивания, что упростило обслуживание оборудования и резко уменьшило его размеры. Культивирование дрожжей про­водят в условиях обильного вспенивания по системе жид­кость-пена-жидкость. Большая площадь поверхности раздела жидкость-воздух в пене обеспечивает активный биосинтез и хороший выход дрожжей.

    В нефтяной промышленности с помощью пены извле­кают нефть из водонефтяных эмульсий. Такую эмульсию методом флотации разделяют на нефть и воду, а затем, изменяя кислотность среды, гасят пену и выделяют нефть.


    С развитием технологий обнаруживается все больше возможностей модификации традиционных материалов, например металла. Структура, состоящая, как правило, из алюминия, и содержащая большое количество наполненных газом пор - называется металлическая пена. Как правило, примерно 75-95 процента ее объема составляют пустоты. Материал обладает уникально малым весом - некоторые виды металлической пены настолько легки, что плавают на поверхности воды. При этом прочность такой пены в несколько раз превышает прочность традиционного металла.

    О пористых металлах заговорили еще в 1990-х годах. Считалось, что отличительной чертой такого материала является низкая плотность: 0,4 - 1 грамм на кубический сантиметр. В силу особенностей своей структуры металлическая пена способна поглощать большое количество энергии при относительно низком уровне напряжения. Технология обеспечила возможность сочетания различных металлов и получения изделий разнообразной формы. Исследования осуществлялись с алюминием, но возможно получение пены из олова, цинка, бронзы, свинца, латуни и других металлов.
    http://www.equipnet.ru/articles/other/other_556.html

    Металлические пены отличаются неожиданным и удивительным свойством - они не плавятся даже при температуре, соответствующей точке плавления исходного сплава. Так, технические сплавы алюминия плавятся при 560 - 640 С. Пеноалюминий нагревали в электропечи при температуре 1400 С, однако он не расплавился; его выдерживали 100 ч при температуре 1482 С, он сильно окислился, но его прочность и размеры деталей остались прежними. Пенометаллы можно многократно нагревать до высоких температур и быстро охлаждать, при этом свойства их изменяются незначительно; другие пеноси-стемы не выдерживают подобных испытаний.

    Освоено производство гибких листов больших размеров из металлической пены с регулируемыми значениями пористости. Для этого в пенометалле содержание воздуха по объему доводят до 93 - 98 %, затем полученный материал прокатывают в листы.

    Дальнейшее совершенствование технологии и снижение стоимости пенометаллов значительно расширит области применения металлической пены.

    Разработана технология получения металлов сетчатого строения, их структура отличается высокой открытой (сообщающейся) пористостью. Такие пенометаллы называются губчатой металлической пеной. В этом случае жидкий металл осаждается на подложку из полиуретано-вой пены.

    Металлографические исследования показали, что после электроэрозионного воздействия структура металла в зоне действия импульса сильно измельчается. На краю и периферических частях лунки наблюдаются заметные остаточные деформации сдвига, наличие которых подтверждается рентгенострук-турным анализом. В центральных частях лунки обнаружены остатки металлической пены.

    При р-афинировании сера вводится в воронку под мешалку. Процесс рафинирования продолжается от 20 до 60 мин в зависимости от содержания меди и железа в припое. Как только образуются сульфиды меди и железа (C112S и Fe2S3), которые всплывают на поверхность припоя в виде металлической пены, под мешалку вводится порошкообразная смесь канифоли к древесного угля з соотношении 1: 3 в количестве 70 % к весу введенной серы. После этого весь сплав нагревают до температуры 300 - 340 С и перемешивают до образования на поверхности сухого порошка черного цвета, который затем снимается. Очищенную поверхность ванны покрывают древесными опилками слоем 3 - 4 мм и включают мешалку. Опилки способствуют выгоранию серы и предотвращают образование сернистого олова.

    Пенометаллы обладают целым комплексом превосходных свойств: объемная масса у них ниже, чем у древесины, а прочность значительно выше; они отлично поглощают энергию удара, легко обрабатываются резанием, в них можно вбивать крепежные детали, склеивать их с другими материалами, например со стеклом, пластиками, фанерой. Металлические пены красивые, со своеобразным трехмерным декоративным рисунком, проявляют хорошие акустические свойства. Пенометаллы хорошо свариваются, имеют высокие демпфирующие свойства (от немецкого Dampfer - гасите ль, способность материалов гасить механические колебания, например вибрацию, или снижать резонансные колебания), повышенную коррозионную стойкость. Прочность изделия из металлической пены значительно повышается при поверхностной обработке-прокатке, ковке, штамповке.

    Глава 1. Механизмы получения металлической пены

    Первая металлическая пена была получена Бенджамином Сосником в 1948 г Этот процесс был основан на нагревании вместе летучих металлов с металлами нелетучими. Во время нагревания нелетучий металл спекался, а более летучий (например, ртуть) испарялся, вспенивая смесь таким образом. Но данный метод не имел коммерческого успеха, поскольку предполагал работу с опасными материалами.

    Прошло много времени, наука шагнула вперёд. И сейчас существует много способов получения металлической пены. Их можно разделить на две большие группы: изготовление металлической пены с использованием жидких расплавов металлов и на основе металлических порошков.

    1.1 Производство металлических пен из расплавов металлов

    Производство данного типа начинается с расплавления металла, из которого металлопена получается с помощью пористого материалом, либо с помощью полимерной пены или литьём жидкого металла на твёрдый наполнитель. Существуют технологии получения металлических пен прямым вспениванием расплавов металлов газами. Рассмотрим подробнее данные методы, выявив их достоинства и недостатки.

    1) Прямое вспенивание расплавов. Данный метод основан на непрерывном пропускании газа через металлический расплав. Метод разработан одновременно и независимо Alcan и Norsk Hydro в конце 1980-х и 1990-х годов. Суть данного метода состоит в том, что металлический расплав может быть вспенен при определённых условиях путём введения газов в жидкость. Пузырьки газа, которые образовываются в металлическом расплаве, будут стремиться быстро подняться на его поверхность из-за высокой выталкивающей силы в высокоплотной жидкости, но этому подъему препятствует высокая вязкость расплавленного металла. Это может быть устранено путём добавления мелкого керамического порошка или легирующих элементов, которые образуют частицы в расплаве.

    Следует отметить, что многочисленные попытки вспенивания жидких металлов были предприняты ещё в 60-70-х годах прошлого века, но, по-видимому, этот процесс был не достаточно оптимизирован, чтобы производить достаточно качественную пену. За последние 10 лет было проведено ряд новых разработок и сейчас доступны лучшие методы производства.

    В настоящие время существует два метода прямого получения вспененных металлических расплавов. Один эксплуатируется Канадской технологической компанией «Cymat» для вспенивания алюминия и алюминиевых сплавов. Следуя этому механизму, нужно использовать карбид кремния (SiC), оксид алюминия (Al2O3) или оксид магния (MgO) для усиления вязкости расплава. Поэтому первый шаг состоит из приготовления алюминиевого расплава, содержащего одно из этих веществ. Проблема состоит в том, что необходимо добиться однородности распределения частиц. Второй шаг - это вспенивание жидкого расплава путём вдувания газов (воздух, азот, аргон) с помощью специально разработанных колёс. Эта установка должна выпускать очень маленькие пузырьки газа в расплав и распределять их однородно. Полученная пена всплывает на поверхности жидкости и тогда её можно собрать посредством ленточного конвейера. Следует предпринять меры, препятствующие разрушению структуры пены из-за взаимного перемещения полутвёрдой пены. Полученный материал, в принципе, бывает сколь угодной длины. Пена велика настолько, насколько позволяет сосуд, содержащий жидкий металл. Обычно толщина пены 10 см. Вспененный материал можно вырезать необходимой формы, но в связи с высоким содержанием керамических частиц, обработка пены может стать проблемой. Преимуществом такого способа производства металлической пены является возможность производства огромных объёмов данного ценного материала, относительно низкая цена и низкая плотность. Пористость пены, полученной данным способом находится в диапазоне от 80 до 97%. К недостаткам вышеописанного способа можно отнести необходимость резать пену, а следовательно открывать поры, а так же хрупкость такой металлической пены из-за усиливающих частиц (SiC, Al2O3, MgO), которые содержаться в пористых стенках.

    Второй путь прямого вспенивания расплавов - это добавление пенообразователя в расплав вместо продувки его газом. Пенообразователь разлагается при нагревании и выделяет газ, который и осуществляет процесс вспенивания.

    Первый шаг процесса - увеличение вязкости расплава. Для этого добавляют кальций (1-2% от общей массы), который окисляется с образованием СаО и СаАl2O4 (возможно образование Al4Ca). В качестве пенообразователя используют гидрид титана (TiH2) , который при нагревании выделяет газ (H2): Пена, полученная таким методом имеет наиболее однородную клеточную структуру, по сравнению с пенами, полученными другим путём.

    2) Эвтектическое затвердевание (твёрдое вещество-газ). Этот метод, который был разработан несколько лет назад на Украине, основан на том, что некоторые жидкие металлы образуют эвтектические системы с газообразным водородом. Сначала плавят металл в автоклаве (автоклав — аппарат для проведения различных процессов при нагреве и под давлением выше атмосферного). Потом растворяют водород в этом расплаве при высоком давлении (обычно 50 атм). Далее температуру делают ниже эвтектической, и система переходит в двухфазное состояние, соответствующее и твердому, и газу.

    Если параметры процесса - скорость охлаждения и профиль давления - будут выбраны соответствующие, то газ будет накапливаться в виде маленьких газовых пузырьков в расплаве, таким образом, образовывая пену. Возможность затвердевания жидкости в определённом направлении предполагает образование пены преимущественно с удлиненными порами. Если сосуд цилиндрический, то возможны радиальные и осевые поры.

    Максимальная пористость, которая может быть достигнута, не выше 5-75 %, но металлы со средними и высокими температурами плавления, такие как медь и никель, могут быть вспенены только таким способом. Структура пор таких пен называется «Gasars» .

    3) Литье по выплавляемым моделям. Металлическая пена может быть изготовлена без непосредственного вспенивания металла. Для этого отправной точкой является полимерная пена. Полимерную пену превращают в структуру с открытыми порами путём манипуляции пенообразования или обработкой пористой структуры. Затем пену заполняют суспензией из термостойкого материала, например, смеси муллита, фенольных смол и карбоната кальция. После высыхания полимер удаляют, и расплавленный металл заливают в полученные открытые пустоты, которые точно представляют первоначальную структуру пены. После удаления формовочного материала (например, под давлением воды) получаем металлическую пену, которая имеет такую же форму, как первоначальная полимерная пена.

    При данном способе доступны пены с различной пористостью от 2,5 до 16 пор на 1 см3. Это очень дорогая пена. Обычно таким способом вспениваются алюминиевые сплавы, но другие металлы тоже могут быть так обработаны.

    4) Осаждение металла на поверхности полиуретана. Можно металлизировать полиуретан с дальнейшим его выжиганием. Полиуретан опускают в раствор, в котором осаждается металл. Ждут пока никель осадится на полиуретане (10-20 минут). Потом металлизированную губку помещают в печь при температуре сжигания полиуретана. Полученную металлическую пену охлаждают.

    5) Синтаксические пены с использованием сварочных технологий. Легкие пористые металлы могут быть получены с помощью распределения в объеме расплава неорганических гранул, полых сфер с низкой плотностью или некоторых материалов. Для этого могут быть использованы свободная часть вспененных гранул глины, свободные частицы оксида алюминия (Al2O3) в сфере пеностекла.

    Гранулы вводятся в расплав или расплав выливается в массу наполнителя. Теплоёмкость и теплопроводность гранул очень низкая, поэтому они не нарушают текучесть металла. Смачивание гранул затруднено в связи с высоким поверхностным натяжением жидкого расплава и промежутки между гранулами полностью не заполняются. Создание небольшого вакуума внутри расплава или внешнее давление существенно облегчают перемешивание.

    Таким способом может быть обработан широкий диапазон металлов, включая алюминий, магний, цинк, свинец и др.

    Металлические пены

    Глава 3. Применение металлических пен

    Металлические пены - это материал, который идеально подходит для создания крупногабаритных и чрезвычайно прочных конструкций -- другого материала, который способен обеспечить такое соотношения прочности и веса, человечество еще не придумало.

    В будущем металлическая пена может стать неотъемлемой частью машиностроения, а также использоваться в производстве металлокерамики. Безусловно, металлические пены будут активно применяться в космических технологиях, где минимизация массы имеет огромное значение. Недавнее открытие американских ученых может еще больше расширить сферу применения этого материала.

    Машиностроение. Наиболее перспективным является использование металлической пены в автомобиле- и машиностроение. Полагают, что этот материал может применяться в качестве элементов боковой и лобовой обшивки кузовов автомобилей и железнодорожных вагонов в целях максимального поглощения энергии удара при столкновениях. Благодаря особенным свойствам, металлические пены являются подходящим материалом для поглощения энергии удара.

    В зависимости от пористости, сплава и плотности пены поглощение энергии может происходить в пределах определенного диапазона. Поэтому пенометаллы можно использовать в качестве наполнителей в бампере. Так же 20% автомобиля может быть изготовлено??из трехмерных панелей алюминиевой пены.

    Компания "Karmann GmbH", системный поставщик для автомобильной промышленности во всем мире отмечает, что в типичном компактном семейном седане это привело бы к массовой экономии на 60 кг, а, следовательно, к сокращению потребления топлива на 9 литров на 1000 км.

    Компания реконструировала технологию панелей кузова: предложила производить автомобильные части до десяти раз более прочные и на 50% более легкие, чем соответствующие части сделанные из стали. Такие лёгкие и прочные сэндвич-панели из пены упрощают устройство корпуса. Полые структуры особенно подходят для мест, где пространство слишком ограничено.

    Бронетехника. Металл идеален при создании военной амуниции. Из алюминиевой пены можно изготавливать лёгкую броню для улучшения её баллистических и конструкционных характеристик. Баллистический тест показал, что динамическая деформация алюминиевой пены начинается на ударной поверхности и распространяется по толщине до полного уплотнения. Пористая структура пены может поглощать больше энергии удара и задерживать ударную волну.

    Космические технологии. Современные системы тепловой защиты, например на шаттлах, основаны на керамической плитке с ультранизкой теплопроводностью. Хотя эти материалы обеспечивают превосходную тепловую защиту и не несут никакой нагрузки на конструкцию, они чрезвычайно хрупкие, легко разрушаются под воздействием окружающей среды.

    Системы тепловой защиты будущего разрабатываются в лабораториях НАСА. Предполагается, что металлическая пена позволит повысить теплоустойчивость без увеличения веса самой тепловой защиты. Также металлическая пена является подходящим материалом для производства космических защитных кожухов для двигателей мягкой посадки.

    Строительство и архитектура. В строительстве и архитектуре металлические пены могут быть применены в качестве панелей для несгораемых дверей и стен, материала для покрытия проводки, технического оборудования, звукоизоляционных панелей. Особые области, где многофункциональные пены могут эксплуатироваться, это подоконники и столбы.

    Пористые металлы с высокой теплопроводностью клеточной стенки материала способны остановить пламя, которое распространяется с большой скоростью. На практике давно используются трубопроводы для транспортировки горючих газов, которые защищены от воспламенения даже вблизи источников огня, так что если возгорание происходит, пламя не может распространяться с высокой скоростью.

    Шумоизоляция. Металлическая пена используется как материал, изолирующий звук, который устанавливается в виде экранов вдоль дороги или шоссе для уменьшения транспортного шума. Шумозащитный экран состоит из слоя металлической пены, который связывает бетон или оцинкованную сталь с воздушным пространством определённой ширины для максимального поглощения шумов. Бетонная подкладка действует как изолятор звука.

    Изолирующая структура обладает амортизирующей способностью, которая действует как электромагнитный щит, ограничивающий электромагнитные помехи от проходящих мимо транспортных средств и ударной волны метро, вызванной высокоскоростными поездами.

    Детали из пенометаллов используются для затухания звука, импульса давления и механической вибрации. Материалы с определённой степенью пористости могут быть изготовлены таким образом, чтобы заглушать избирательно некоторые частоты, при свободном пропуске других. Внезапные изменения давления, происходящие в компрессорах или пневматических устройствах, могут быть заглушены с помощью спеченных пористых материалов.

    Медицина. В медицине металлические пены используют для ускорения процессов заживления костной ткани. Как уже было отмечено, структура пористого материала подобна естественной структуре кости. Богданова А. Металл будущего станет пористым. [Электронный ресурс] / А. Богданова -20010-. - Режим доступа: http://www.equipnet.ru/articles/other/other_556.html свободный. - Загл. с экрана.

    2 Vendra « Composite Metal Foams» Так же он показывают высокую коррозионную стойкость, биологическую совместимость по сравнению с другими металлами и сплавами. Поэтому он идеально подходит для замещения кости. Использование композитных имплантатов из титановой пены позволяет значительно ускорить выздоровление пациентов со сложными переломами костей.

    Ученые разработали биологически совместимый материал, структурой и физическими свойствами подобный естественной костной ткани. В итоге титановая пена выступает каркасом, а минеральное покрытие обеспечивает врастание в него костной ткани. Магниевые пены могут быть использованы в качестве биоразлагаемых имплантатов, которые служат в качестве поддерживающих структур до тех пор, пока кость еще растет, но постепенно усваиваются организмом на более позднем этапе.

    Электрохимическое применение. Металлические пены могут быть использованы как материал для электродов в электрохимических реакторах. В фильтр - прессах, содержащих электроды, металлические пластины разделены с помощью пластиковых петель. Если эти петли заменить листами никелевой пены, то площадь поверхности электрода увеличится, и реактор может быть более компактный.

    Металлические пены могут также использоваться для оптимизации улучшения каталитических процессов, таких как окисление бензилового спирта при взаимодействии NiOOH, который получается на никелевом аноде. Уплотнённые слои металлической пены, как мы видим, улучшают работу таких реакторов.

    Металловойлочные электроды имеют высокопористую основу, сделанную из никелевых или углеродных волокон. Вместо войлока может использоваться пеноникель, получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. Пенополимерные электроды характеризуются высокой удельной емкостью и большим ресурсом. Также на данный момент известен карбонильный метод получения пеноникеля. Экспериментально доказано, что аккумуляторы, изготовленные на основе карбонильного пеноникеля, обладают ёмкостью на 30-40% выше, чем аккумуляторы, изготовленные на основе электролитического пеноникеля.Лисаков Ю.Н. Исследование и разработка технологии производства пеноникеля методами карбонильной металлургии: Автореферат диссертации кандидата технических наук. Санкт-Петербург.2005, С.21

    Сейчас разрабатывается следующее поколения электромобилей и гибридных автомобилей компаниями Тойота и Хендай. Для этого используются никелевые батареи. Никелевые батареи дают выигрыш в запасе энергии на единицу веса, если использовать никелевую пену в качестве положительного электрода, а в качестве отрицательного электрода сплавы никеля с редкоземельными металлами.

    Свинцовая пена могла бы использоваться в качестве помощника активному веществу в свинцово-кислотных батареях, как замена обычной свинцовой решётки, тем самым позволяя изготовлять очень легкие электроды. Свинцовую пену заполняют в пустоты, и она действует как очень проводящая решетка, приводящая к низкому внутреннему электрическому сопротивлению батареи.

    Литейное производство. Сложные детали на основе пен могут заменить песчаные стержни, используемые в литейном производстве. В этом случае часть пены будет оставаться в отливки, и это приведёт к экономии трудовых и энергетических затрат, связанных с удалением песка. Таким образом, полностью закрытые лёгкие сечения могут быть изготовлены в отливках, которые приводят к значительному улучшению механических и акустических свойств по сравнению с обычными сердечниками.

    Очищение воды. Пористые металлические материалы могут быть использованы для уменьшения концентрации нежелательных ионов, растворенных в воде. Загрязненная вода проходит через высокопористый металл с открытыми ячейками. Ионы вступают в окислительно-восстановительной реакции с клеточной структурой металлической матрицы, в результате воды очищается.

    Также металлические пены нашли своё применение и в других областях. Высокопроводящие открытые поры пены, изготовленной из меди или алюминия, могут быть использованы в качестве теплообменников. При прохождении через пену нагретых или охлаждённых газов или жидкостей, сама пена будет в тоже время нагреваться или охлаждаться. Открытые поры могут минимизировать снижение давления.

    Пример такого применения - компактный теплоотвод, используемый для того, чтобы охладить микроэлектронные устройства с высокой плотностью размещения (компоновки), такие как компьютерные микросхемы или мощные электронные компоненты. Обычно в таких ситуациях используется печатная плата. Большая площадь поверхности, низкое удельное сопротивление потоку и хорошая теплопроводность металлических пен позволяют использовать их для уменьшения испарения.

    Приборы, контролирующие ударную волну, могут быть изготовлены из металлической пены. С помощью такого прибора волна может направляться и перенаправляться. Кроме того, пены с закрытыми порами были изучены на предмет их пригодности в качестве адаптера сопротивления для ультразвуковых источников.

    металлическая пена пеноалюминий

    Активирование процессов взаимодействия компонентов композита на границе раздела фаз

    Композиционные материалы можно смело назвать материалами XXI века. Области применения км определяются не только механическими, но и физическими их свойствами - электрическими, магнитными, ядерными, акустическими и др...

    Изготовление литых деталей из металлических сплавов

    Коррозия на Оренбургском газоперерабатывающем заводе

    Коррозионная активность H2S-содержащего газа увеличивается, как известно, с ростом Степень агрессивности сероводородсодержащей среды определяется ее составом, влажностью, рН, температурой, давлением и скоростью потока...

    Металлические пены

    Производство данного типа начинается с расплавления металла, из которого металлопена получается с помощью пористого материалом, либо с помощью полимерной пены или литьём жидкого металла на твёрдый наполнитель...

    Металлические пены

    Для изготовления пористых металлических структур вместо расплавленного металла могут быть использованы металлические порошки. Опять же, существует несколько различных методов...

    Металлические пены

    Особенности слесарных работ судоремонтного завода

    Опиливания, зачистки и шабрения поверхностей зачастую бывает недостаточно, чтобы достигнуть достаточно плотного прилегания деталей друг к другу...

    Проектирование работ по техническому обслуживанию и ремонту подъемно–транспортного оборудования предприятия

    При ТО тщательно осматривают металлоконструкции кранов, так как их разрушение связано с тяжелыми последствиями...

    Разработка технологии производства крупногабаритных тонколистовых профилей в роликах и разработка конструкции межклетьевых проводок

    Показатели развития легких металлических конструкций В настоящее время для всех развитых стран мира ведущим направлением эффективного металлостроительства является применение легких металлических конструкций в зданиях промышленного...

    Релаксационная стойкость напряжений в металлах и сплавах

    Сопротивление металлических материалов релаксации напряжений зависит, прежде всего, от прочности связей в кристаллической решетке основного металла. Б.М. Ровинский и В.Г. Лютцау показали, например, что чем «жестче» кристаллическая решетка...

    К газам в стали относят, как правило, азот и водород. Особенностью растворения азота и водорода в металлических расплавах является то, что они диссоциируют на атомы. В этом случае реакция растворения газа (Г) записывается в виде...

    Теория металлургических процессов

    Под раскислением понимают комплекс операций по снижению содержания кислорода в жидкой стали. Основными задачами раскисления являются: снижение содержания кислорода в жидком железе присадками элементов с большим сродством к кислороду...

    Получение металлических порошков является важнейшей операцией технологического процесса изготовления деталей из порошковых материалов, от которой зависят их основные свойства...

    Технология изготовления изделия из металлических порошков

    Металлические порошки характеризуются технологическими, физическими и химическими свойствами, основные из которых регламентируются ГОСТами и техническими условиями. К технологическим свойствам порошков относятся: насыпная плотность...

    Физические, химические, механические и технологические свойства металлов: чугуна и стали, алюминия, меди и сплавов. Применение металлов

    Металлические материалы делятся на металлы и сплавы. Металлы состоят из одного основного элемента и незначительного количества примесей других элементов. По степени чистоты различают металлы технической, высокой и особой чистоты. Например...

    Cтраница 1


    Металлические пены отличаются неожиданным и уди-вител Вным свойством - они не плавятся даже при температуре, соответствующей точке плавления исходного сплава. Так, технические сплавы алюминия плавятся при 560 - 640 С. Пеноалюминий нагревали в электропечи при температуре 1400 С, однако он не расплавился; его выдерживали 100 ч при температуре 1482 С, он сильно окислился, но его прочность и размеры деталей остались прежними. Пенометаллы можно многократно нагревать до высоких температур и быстро охлаждать, при этом свойства их изменяются незначительно; другие пеноси-стемы не выдерживают подобных испытаний.  

    Освоено производство гибких листов больших размеров из металлической пены с регулируемыми значениями пористости. Для этого в пенометалле содержание воздуха по объему доводят до 93 - 98 %, затем полученный материал прокатывают в листы.  

    Дальнейшее совершенствование технологии и снижение стоимости пенометаллов значительно расширит области применения металлической пены.  

    Разработана технология получения металлов сетчатого строения, их структура отличается высокой открытой (сообщающейся) пористостью. Такие пенометаллы называются губчатой металлической пеной. В этом случае жидкий металл осаждается на подложку из полиуретано-вой пены.  

    Металлографические исследования показали, что после электроэрозионного воздействия структура металла в зоне действия импульса сильно измельчается. На краю и периферических частях лунки наблюдаются заметные остаточные деформации сдвига, наличие которых подтверждается рентгенострук-турным анализом. В центральных частях лунки обнаружены остатки металлической пены.  

    При р-афинировании сера вводится в воронку под мешалку. Процесс рафинирования продолжается от 20 до 60 мин в зависимости от содержания меди и железа в припое. Как только образуются сульфиды меди и железа (C112S и Fe2S3), которые всплывают на поверхность припоя в виде металлической пены, под мешалку вводится порошкообразная смесь канифоли к древесного угля з соотношении 1: 3 в количестве 70 % к весу введенной серы. После этого весь сплав нагревают до температуры 300 - 340 С и перемешивают до образования на поверхности сухого порошка черного цвета, который затем снимается. Очищенную поверхность ванны покрывают древесными опилками слоем 3 - 4 мм и включают мешалку. Опилки способствуют выгоранию серы и предотвращают образование сернистого олова.  

    Пенометаллы обладают целым комплексом превосходных свойств: объемная масса у них ниже, чем у древесины, а прочность значительно выше; они отлично поглощают энергию удара, легко обрабатываются резанием, в них можно вбивать крепежные детали, склеивать их с другими материалами, например со стеклом, пластиками, фанерой. Металлические пены красивые, со своеобразным трехмерным декоративным рисунком, проявляют хорошие акустические свойства. Пенометаллы хорошо свариваются, имеют высокие демпфирующие свойства (от немецкого Dampfer - гасите ль, способность материалов гасить механические колебания, например вибрацию, или снижать резонансные колебания), повышенную коррозионную стойкость. Прочность изделия из металлической пены значительно повышается при поверхностной обработке-прокатке, ковке, штамповке.  

    Способы раскатки проводов на переходах через реки.  

    Если трасса имеет пересечения, то выбирается более удобное для завоза место, из которого раскатка может вестись в двух направлениях. При работе на заболоченной местности иногда применяется раскатка из одного места нескольких соединенных отрезков провода и троса. Если трасса имеет уклон, то барабаны развозятся с учетом раскатки их в направлении уклона. Если автомобилем барабаны развозить невозможно, используют трелевочные тракторы или металлические пены, буксируемые тракторами. Применяют также пены-козлы, с которых производится раскатка проводов и тросов. Раскатка, как правило, производится по роликам с неподвижно установленных барабанов. При раскатке барабанов в направлении уклона они должны тормозиться.  

    Элементы опор доставляют комплектно с максимально возможным укрупнением узлов. Легко деформируемые элементы транспортируют в положении, исключающем возможность их повреждения. Не разрешается подвергать ударам, толчкам и сбрасыванию стволы железобетонных опор при погрузочно-разгрузочных работах и транспортировке. Опоры перевозят на специально оборудованных опоровозах, тракторах с прицепами, а также с помощью металлических пен или саней, имеющих специальное поворотное устройство. Погрузку и разгрузку опор производят, как правило, краном со строповкой их в двух местах, расположенных симметрично центру тяжести опоры. На труднодоступных участках для транспортировки и монтажа опор могут быть использованы вертолеты.  

    Страницы:      1