Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Генетика пола. Наследование признаков сцепленных с полом. Признаки, сцепленные с полом. Что будем делать с полученным материалом

    Генетика пола. Наследование признаков сцепленных с полом. Признаки, сцепленные с полом. Что будем делать с полученным материалом

    Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Если в скрещивании участвовали красноглазые самки и белоглазые самцы, все потом­ство рождалось красноглазым. Во втором же поколении наблюда­лось расщепление в соотношении 3:1. Но скрещивания расщепление было только среди самцов: одна половина из них была с белыми глазами и другая - с красными; все самки были красноглазыми. При обрат­ном (реципрокном) скрещивании белоглазых самок с красногла­зыми самцами картина была иной: все самки имели красные глаза, самцы - белые. При скрещивании этих особей во втором поколении половина самцов и самок рождалась красноглазыми. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом . Эти признаки обусловлива­ются генами, локализованными в половых хромосомах. Установ­лено, что наследование их зависит в основном от Х-хромосомы.

    Практическое использование сцепленного с полом наследова­ния признаков. В птицеводстве оказалась полезной рецессивная, сцепленная с Х-хромосомой мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продук­цией, для них требуется меньшая площадь содержания. Они резистентны к отдельным болезням. В шелководстве получил распространение метод использова­ния сцепленных с полом деталей для получения гусениц только мужского пола, дающих более крупные коконы, содержащие шелка на 25-30 % больше, чем коконы гусениц самок

    Конец работы -

    Эта тема принадлежит разделу:

    Генетикапредмет, объект. Методы генетических исследований

    Митоз упорядоченное деление ядра клетки при котором каждая их двух дочерних клеток получает такое же количество и те же типы хромосом какие имела..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Генетика- предмет, объект. Методы генетических исследований
    Предмет генетики. Генетика-наука о наследственности и изменчивости организмов. Наследствен­ность - свойство живых существ обеспечивать

    Роль ядра в передаче наследственной информации
    Ядро - это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию(молекулы ДНК), осуществляющий основные функции: хранение, передача и реализаци

    Кариотип и его видовые особенности
    В соматических клетках хромосомы парные, а набор хромо­сом в них диплоидный. " Парность хромосом возникает при слиянии (оплодотворении) мужской и женской половых клеток, которые

    Законы Менделя правило чистоты гамет
    Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающих

    Аллели, множественный аллелизм
    Аллели - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же

    Взаимодействие аллельных генов. Летальные гены
    При промежуточном наследовании потомство в первом поколении сохраняет единообразие, обладает признаком промежуточного характе­ра. Иногда признак принимает не среднее выражение, а уклоня­ется в стор

    Учет врожденных болезней и аномалий. Методы генетического анализа
    Гены, вызывающие гибель 100 % особей до достижения ими половой зрелости, называются летальными, более 50 % - субле­тальными (полулетальными) и менее 50 % - субви­тальными Летальные гены могут быть

    Взаимодействие неаллельных генов. Схемы скрещиваний
    Новообразование.Новообразованием называется такой тип взаимодействия генов, когда при их сочетании в одном организ­ме развивается совершенно новая форма признака. Комплемен

    Гены-модификаторы, экспрессивность, пенетрантность, плейотропия
    Гены-модификаторы.Гены, не проявляющие собственного действия, но усиливающие или ослабляющие эффект действия других генов, называются генами-модификаторами.

    Сцепленное наследование признаков (полное и неполное). Определение расстояния между генами
    Гены, расположенные в одной хромосоме, представляют собой группу сцепления. Сцепление генов - это совместное наследование генов, располо­женных в одной и той же хромосоме. Количество групп с

    Соматический (митотический) кроссинговер и факторы, влияющие на кроссинговер. Сущность хромосомной теории наследственности
    Сущность соматического кроссинговера заключается в том, что он осуществляется при митотическом делении соматических кле­ток главным образом эмбриональных тканей. Кроссинговер проис­ходит меж

    Карты хромосом и метод их построения
    гены расположены в хромосомах в линейной последователь­ности на определенных расстояниях друг от друга. На основании анализа частоты кроссинговера между генами к настоящему времени для многи

    Хромосомное определение пола. Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм)
    1 Хромосомное определение пола. У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогам

    Бисексуальность организмов. Наследование признаков ограниченных полом
    Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки муж

    Проблема регуляции пола
    Проблема регуляции пола вытекает из необходимости увели­чения продукции животноводства за счет преимущественного получения особей одного вида, дающих более высокий выход молока, мяса, и т. д. От вы

    Доказательства роли ДНК в наследственности. Биологическая роль нуклеиновых кислот
    1ый опыт на мышах. Ученый вводил мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении

    Строение ДНК. Ее роль в жизнедеятельности клетки, репликация ДНК
    ДНК - это длинная полимерная молекула, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт д

    Виды РНК, их функции, строение. Генетический код и его свойства
    три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РН

    Синтез белка в клетке
    На­следственность реализуется в процессе биосинтеза белка. Синтез ферментов и других белков, необходимых для жизнедеятельности и развития организмов, происходит в основном на первой стадии интерфаз

    Строение и размножение бактерий
    Клетки бактерий окружены оболочкой, внутри которой находятся цитоплазма, ядерный аппарат, рибосомы, ферменты и другие включения. у них отсутствуют митохондрии, аппарат Гольджи и эндоплазматическая

    Строение и размножение вирусов. Взаимодействие фага с бактериальной клеткой
    Вирусы – неклеточные формы жизни. Частицы вирусов (от 20 до 450 нм). они имеют палочковидную, шарообразщую, многогранную форму. Вирусная частица содержит одну из нуклеиновых кислот, которая окружен

    Конъюгация у бактерий
    Конъюгация - перенос генетического материала от одной бак­териальной клетки (донора) к другой (реципиенту) при их непо­средственном контакте. Неравноценная роль

    Трансдукция у бактерий
    Трансдукция - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Явление трансдукции уста­новлено у кишечной палочки и актиномицетов. Как прав

    Трансформация у бактерий
    Трансформация - поглощение изолированной ДНК бактерии до­нора клетками бактерии реципиента. Явление трансформации кратко освещено при изложении доказательств роли ДНК в

    Генная инженерия и задачи, которые она решает
    Биотехнология - это наука об использовании живых организмов и биологических процессов в производстве. Генная инженерия

    Клеточная инженерия. Соматическая гибридизация
    Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. С

    Эмбриогенетическая инженерия. Клонирование эмбрионов млекопитающих
    Эмбриогенетическая инженерия - это активная перестройка генома животных путем вмешательства в их развитие на самых ранних стадиях онтогенеза. Перестройка генома - это ре

    Химерные животные. Трансгенные животные
    1)Одно из перспективных направлений биотехнологии - искус­ственное получение химер (аллофенных животных). Понятие хи­мера означает составное животное. Сущность метода

    Виды изменчивости
    Мутационная изменчивость.Мутация - стойкое изменение в структуре ДНК и кариотипе. Мутационный процесс - первоис­точник наследственной изменчивости. В результате его у потом­

    Вариационный ряд и его построение
    Вариационный ряд - это упорядоченное изображе­ние реально существующего распределения особей в группе по величине признака. Вариационный ряд - это двойной ряд чисел, состоящ

    Перечислить основные статистические параметры, характеризующие совокупность и что они показывают
    Средние величины. Средняя арифметическая (х) показывает, какое значение признака наиболее характерно в целом для данной совокупности. Она используется для сравнения пород, стад, ли

    Ошибки репрезентативности и их применение в биометрии
    Биометрия- наука о применении математических методов в биологических исследованиях. Впрактичес­кой работе основные параметры совокупности х и а вычисляют не по гене

    Определение достоверности разности между средними арифметическими двух выборочных совокупностей
    При сравнении средних арифметических двух генеральных со­вокупностей любая разность между ними будет достоверна. В ве­теринарии, зоотехнии приходится сравнивать между собой средние величины не гене

    Изучение закономерностей наследования признаков, сцепленных с полом, и выяснение возможностей их использования в практической деятельности человека можно проводить только на животных с ярко выраженным половым диморфизмом, имеющих характерные признаки, гены которых находятся в половой Х-хромосоме. В условиях пришкольного участка для этих целей наиболее удобно использовать кур, канареек и других животных.

    План опыта с курами

    Тема опыта. Закономерности наследования окраски оперения у кур.

    Задачи опыта. 1. Закрепить навыки ухода за курами. 2. Установить специфику наследования признаков, гены которых находятся в половых хромосомах. 3. Выяснить возможности использования в практической деятельности человека закономерностей наследования признаков, гены которых находятся в половых хромосомах.

    Выбор и содержание исходных пар. Для опыта в качестве родительских форм отобрать молодых здоровых гомозиготных птиц двух пород: с полосатым оперением (плимутрок) и с черным оперением (австралорпы, украинские черные или др.). Опыт провести в двух вариантах: 1) прямое скрещивание (куры черные´петух полосатый); 2) обратное скрещивание (куры полосатые´петух черный). В каждом варианте взять по 2-3 курицы и одному петуху. Данные о родителях записать в журнал гибридизации по следующей схеме:

    Дата Родители, гибриды Пол Прямое скрещивание Обратное скрещивание
    количество особей окраска оперения количество особей окраска оперения
    Р Куры
    Петухи
    F 1 Куры
    Петухи
    F 2 Куры
    Петухи

    Для получения отобранных для опыта птиц поместить в клетки отдельно по вариантам и содержать при одинаковом уходе и кормлении (обычных для кур). Снесенные яйца учитывать, хранить и помещать для насиживания отдельно по вариантам, снабдив этикеткой, в которой указана гибридная комбинация.

    Гибриды F 1 . Выращивать гибридных цыплят нужно отдельно по вариантам в обычных для кур условиях кормления и содержания. Когда цыплята достигнут половой зрелости, в каждом варианте установить окраску оперения у курочек и петушков, подсчитать количество особей с одинаковым фенотипом, данные наблюдений занести в журнал гибридизации. Для получения гибридов F 2 в каждом варианте из гибридов F 1 отобрать по 2-3 курочки и одному петушку, поместить в клетки и содержать так же, как родителей. Яйца хранить и помещать для насиживания отдельно по вариантам с этикеткой, в которой указана комбинация.



    Гибриды F 2 . Выращивать цыплят из F 2 нужно отдельно по вариантам, как гибриды F 1 . Когда они достигнут половой зрелости, в каждом варианте подсчитать количество курочек и петушков, определить окраску оперения. Данные наблюдений внести в журнал гибридизации.

    Анализ результатов опыта. Данные учетов проанализировать и сделать выводы о характере окраски оперения у кур.

    При правильном ведении опыта в разных вариантах характер наследования окраски оперения у птиц должен быть иным. При прямом скрещивании (1-й вариант) в F 1 все курочки и петушки должны быть полосатыми. Это говорит о том, что ген полосатости доминирует над геном черной окраски. В F 2 все петушки должны быть полосатыми, а из курочек 50% полосатыми и 50% черными. При обратном скрещивании в F 1 все петушки будут черными, как мать, а курочки - полосатыми, как отец; в F 2 50% петушков и 50% курочек будут черными, а 50% -полосатыми.

    Такой характер наследования говорит о том, что у кур ген, определяющий окраску оперения, находится в половой хромосоме. (У птиц гетерогаметный пол женский. Половой комплекс самки - XX , самца - XY ). Схема наследования этого признака приведена на рисунке 75.


    Данные опыта использовать на уроках общей биологии в X классе при изучении сцепленного с полом наследования и в практике птицеводства, для определения пола молодых цыплят, которые, как известно, в раннем возрасте не имеют внешне заметных половых различий, а вместе с тем экономически целесообразно сразу после рождения отделить петушков и курочек и определить им различные режимы кормления и содержания, так как в дальнейшем курочки пополнят стадо несушек, а петушки будут использованы как бройлеры.

    Опыт с канарейками. Сцепленное с полом наследование можно продемонстрировать и на других объектах, например на канарейках, у которых доминантный ген А , определяющий зеленое оперение, и его рецессивная аллель (а ), определяющая коричневое оперение, находятся в половой (X ) хромосоме. Скрещивание, как и у кур, провести в двух вариантах: 1) прямое скрещивание (зеленый (АА )´коричневая (ау ); 2) обратное скрещивание (коричневый (аа )´зеленая (Ау ).

    В 1911 -1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя на мухах-дрозофилах. Они учитывали две пары альтернативных признаков: серый (В) и черный (Ь) цвет тела и нормальные (V) и короткие (v) крылья. При скрещивании гомозиготных особей с серым цветом тела и нормальными крыльями с мухами с черным цветом тела и короткими крыльями получили единообразие гибридов первого поколения - мух с серым телом и нормальными крыльями. Подтвердился I закон Менделя.

    Морган ожидал получить, согласно третьему закону Менделя, мух четырех разных фенотипов в равном количестве (по 25%), а получил двух фенотипов (по 50% каждого). Морган пришел к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, в каждой хромосоме содержится большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе (сцепленно). Цитологические основы этого явления можно пояснить следующей схемой (рис. 1). Одна из пары гомологичных хромосом содержит два доминантных гена (BV), а другая - два рецессивных (bv). При мейозе хромосома с генами BV попадет в одну гамету, а хромосома с генами bv в другую.

    Рис. 1. Схема расхождения гомологичных хромосом в мейозе при полном сцеплении.

    Таким образом, у дигетерозиготного организма образуются не четыре типа гамет (когда гены расположены в разных хромосомах), а только два, и, следовательно, потомки будут иметь два сочетания признаков (как у родителей).

    Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы, и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи-дрозофилы всего 8 хромосом - 4 труппы сцепления, у человека 46 хромосом - 23 группы сцепления.

    Если гены, локализованные в одной хромосоме, передаются всегда вместе, то такое сцепление называется пол ным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку мухи-дрозофилы скрестить с рецессивным самцом, результат будет следующий:

    Морган предполагал получить опять мух четырех фенотипов по 25%, а получил потомков четырех фенотипов, но в другом соотношении: по 41,5% особей с серым телом и нормальными крыльями и с черным телом и короткими крыльями и по 8,5% мух с серым телом и короткими крыльями и с черным телом и нормальными крыльями. В этом случае сцепление ге нов неполное, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера, которое заключается в обмене участками гомологичных хроматид в процессе их конъюгации в профазе мейоза I (рис. 2). Кроссинговер у гетерозиготных организмов приводит к перекомбинации генетического материала.

    Рис. 2. Схема кроссинговера

    Каждая из образовавшихся хроматид попадает в отдельную гамету. Образуются 4 типа гамет, но в отличие от свободного комбинирования их процентное соотношение будет неравным, так как кроссинговер происходит не всегда. Частота кроссииговера зависит от расстояния между генами: чем больше расстояние, тем чаще может происходить кроссинговер. Расстояние между генами определяется в процентах кроссииговера - 1 морганида равна 1 % кроссинговера.

    Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. Неполное сцепление наблюдается тогда, когда происходит перекомбинация генов (кроссинговер), расположенных в одной хромосоме. Если гены расположены в одной хромосоме и кроссинговер не происходит, сцепление будет полным. Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.

    Основные положения хромосомной теории наслед ственности:

    Гены расположены в хромосомах линейно в определенных локусах (участках); аллельные гены занимают одинаковые локусы в гомологичных хромосомах;

    Гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;

    Между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);

    Расстояние между генами пропорционально проценту кроссииговера и выражается в морганидах.

    Пол организма - это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

    В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы - кариотип. Различают хромосомы, одинаковые для обоих полов - аутосомы, и половые хромосомы.

    В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы - Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма (рис. 3).

    Рис. 3. Схема определения пола у человека. Половина сперматозоидов несет X -хромосому, а другая половина - Y -хромосому. Пол ребенка зависит от того, какой сперматозоид оплодотворит яйцеклетку

    У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным - мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский - гетерогаметен.

    Признаки, сцепленные с полом

    Это признаки, которые кодируются генами, находящимися на половых хромосомах. У человека признаки, кодируемые генами Х-хромосомы, могут проявляться у представителей обоих полов, а кодируемые генами Y-хромосомы - только у мужчин.

    Следует иметь в виду, что в мужском генотипе только одна Х-хромосома, которая почти не содержит участков, гомологичных с Y-хромосомой, поэтому все локализованные в Х-хромосоме гены, в том числе и рецессивные, проявляются в фенотипе в первом же поколении.

    В половых хромосомах содержатся гены, регулирующие проявление не только половых признаков. Х-хромосома имеет гены, отвечающие за свертываемость крови, цветовое восприятие, синтез ряда ферментов. В Y-хромосоме содержится ряд генов, контролирующих признаки, наследуемые по мужской линии (голандрические признаки): волосистость ушной раковины, наличие кожной перепонки между пальцами и др. Известно очень мало генов, общих для Х- и Y-хромосом.

    Различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

    Х-сцепленное наследование

    Так как Х-хромосома присутствует в кариотипе каждого человека, то и признаки, наследуемые сцеплено с Х-хромосомой, проявляются у представителей обоих полов. Женщины получают эти гены от обоих родителей и через свои гаметы передают их потомкам. Мужчины получают Х-хромосому от матери и передают ее своему потомству женского пола.

    Различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. У человека Х-сцепленный доминантный признак передается матерью всему потомству. Мужчина передает свой Х-сцепленный доминантный признак лишь своим дочерям. Х-сцепленный рецессивный признак у женщин проявляется лишь при получении ими соответствующего аллеля от обоих родителей. У мужчин он развивается при получении рецессивного аллеля от матери. Женщины передают рецессивный аллель потомкам обоих полов, а мужчины - только дочерям.

    При Х-сцепленном наследовании возможен промежуточный характер проявления признака у гетерозигот.

    Y-сцепленные гены присутствуют в генотипе только мужчин и передаются из поколения в поколение от отца к сыну.

    Сцепленное наследование

    Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

    Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.


    Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее.

    Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

    Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев - над геном недоразвитых) (рис. 327). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

    Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, - в другой. Явление совместного наследования признаков Морган назвал сцеплением . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления . Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека - 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

    Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и ав, а отцовский - один тип - ав . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв . Каковы причины появления таких особей? Для объяснения этого факта необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

    В зависимости от особенностей образования гамет, различают:

    некроссоверные гаметы - гаметы с хромосомами, образованными без кроссинговера:
    кроссоверные гаметы - гаметы с хромосомами, претерпевшими кроссинговер:

    Соответственно этому различают:

    © рекомбинантные (кроссоверные ) особи - особи, возникшие с участием кроссоверных гамет;

    © нерекомбинантные (некроссоверные ) особи - особи, возникшие без участия кроссоверных гамет.

    Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:

    © полным , если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);

    © неполным , если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

    Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой .

    Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

    © гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;



    © каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

    © гены расположены в хромосомах в определенной линейной последовательности;

    © гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

    © сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:

    ¨ является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

    ¨ зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

    © каждый вид имеет характерный только для него набор хромосом - кариотип.

    40.4. Генетика пола

    Как известно, большинство животных и двудомных растений являются раздельнополыми организмами, причем внутри вида количество особей мужского пола приблизительно равно количеству особей женского пола.

    Пол можно рассматривать как один из признаков организма. Наследование признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный (рис. 328).

    Пол чаще всего определяется в момент оплодотворения. У человека женский пол является гомогаметным, то есть все яйцеклетки несут Х-хромосому. Мужской организм - гетерогаметен, то есть образует два типа гамет - 50% гамет несет Х-хромосому и 50% - Y-хромосому. Если

    образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

    Соотношение полов, близкое к расщеплению 1:1, соответствует расщеплению при анализирующем скрещивании. Поскольку женский организм имеет две одинаковые половые хромосомы, его можно рассматривать как гомозиготный, мужской, образующий два типа гамет - как гетерозиготный.

    Из приведенной схемы видно, как происходит формирование в равных количествах двух групп особей, отличающихся набором половых хромосом.

    Существует четыре основных типа хромосомного определения пола (рис. 329):

    © мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

    © мужской пол гетерогаметен; 50% гамет несут Х-, 50% -не имеют половой хромосомы;

    © женский пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

    © женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы.

    40.5. Наследование признаков,
    сцепленных с полом

    Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма - они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

    Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

    Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

    У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление - 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

    Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

    Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

    У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации (рис. 330). Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных .

    Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

    У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз - повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом - только от отца к сыну.

    Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом . Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак).

    40.6. Генотип целостная,
    исторически сложившаяся система генов.

    Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

    После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что:

    © один и тот же ген может оказывать влияние на развитие нескольких признаков;

    © один и тот же признак может развиваться под влиянием многих генов.

    Различают несколько типов взаимодействия аллельных генов:

    © Полное доминирование , при котором рецессивный признак не проявляется;

    © Неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования.

    © Кодоминирование , в этом случае у гибридов проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i O i O , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В.

    Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

    Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

    Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал,

    что куры с розовидным гребнем имеют генотип А_bb , с гороховидным - ааВ_ , с ореховидным - А_В_ и с листовидным - ааbb , то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А , гороховидного - наличие только гена В , сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

    При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

    Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генамиССII , а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С , а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

    При скрещивании, например, леггорнов (ССII )с плимутроками (ссii ), все потомство F 1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi ). Если же гибридов F 1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii ).

    Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на разви-

    тие одного и того же признака. Такие гены называют полимерными , или множественными , и обозначают одной буквой с соответствующим индексом, например, А 1 , А 2 , а 1 , а 2 .

    Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

    Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F 1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F 2 происходило расщепление в отношении 63 краснозерных на 1 белозерное. Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов.

    У человека по типу полимерии наследуется, например, окраска кожи.

    Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака,нои воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

    Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

    У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

    Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

    Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

    Генетика человека с основами общей генетики [Учебное пособие] Курчанов Николай Анатольевич

    4.5. Генетика пола и сцепленное с полом наследование

    Генетический механизм определения пола в природе обусловлен генами, локализованными на особых половых хромосомах, имеющихся в кариотипе. Пол, у которого в кариотипе одинаковые половые хромосомы, называется гомогаметным, а пол, у которого в кариотипе разные половые хромосомы, – гетерогаметным. Неполовые хромосомы кариотипа называются аутосомами.

    Морфологически различающиеся половые хромосомы представляют собой пару гомологов, поскольку имеют гомологичный участок, что позволяет им конъюгировать в мейозе. Однако гомологичный участок половых хромосом гетерогаметного пола обычно очень мал, поэтому большинство их аллелей присутствуют в генотипе в единственном числе. Наличие только одного аллеля в генотипе диплоидного организма называется гемизиготой.

    В природе встречаются разные варианты хромосомного определения пола. Чаще гетерогаметным полом является мужской, а гомогаметным – женский, что наблюдается у млекопитающих (рис. 4.3).

    У птиц (рис. 4.4) гетерогаметным полом является женский (WZ), а гомогаметным – мужской (ZZ). У некоторых насекомых самцы и самки могут различаться числом половых хромосом (либо две одинаковые, либо одна). Наконец, у пчел самки диплоидны, а самцы – гаплоидны (возникают путем партеногенеза из неоплодотворенных яйцеклеток).

    Рис. 4.3. У млекопитающих гетерогаметным полом является мужской, а гомогаметным – женский

    Кариотип человека включает 44 аутосомы и 2 половые хромосомы – у женщин XX, у мужчин ХY. Однако половой кариотип не исчерпывает вопрос детерминации пола. Этот вопрос далее рассмотрен отдельно.

    Половые хромосомы всегда несут различные гены, не связанные с формированием пола (например, цвет глаз у дрозофилы). Наследование генов, локализованных на половых хромосомах, получило называние сцепленного с полом наследования. Такие гены обычно обозначают в виде верхнего индекса соответствующей половой хромосомы(Х А, Х В, Y с+ и т. д.).

    Рис. 4.4. У птиц гетерогаметным полом является женский, а гомогаметным – мужской

    У млекопитающих Х-хромосома имеет довольно много генов, а Y-хромосома, наоборот, мало. Так, у человека, по различным данным, Х-хромосома несет более 700 генов, а Y-хромосома – около 80. У самцов рецессивные гемизиготные гены Х-хромосомы могут проявлять свой фенотипический эффект. У самок также одна из двух Х-хромосом подвергается гетерохроматизации в раннем эмбриогенезе и инактивируется. Биологический смысл этого явления получил объяснение в гипотезе М. Лайон через механизм «дозовой компенсации», приводящий в соответствие дозы генов Х-хромосом у разных полов. Процесс гетерохроматизации Х-хромосом носит случайный характер, поэтому в разных клетках женского организма инактивированы разные Х-хромосомы(либо отцовская, либо материнская), а значит, могут функционировать разные аллели гомологичных генов.

    В генетике пола выделяют также такое понятие, как наследование, ограниченное полом. Оно обусловлено генами, локализованными на аутосомах, но фенотипически проявляющимися у разных полов по-разному.

    Формирование половых признаков, полового поведения – это сложный, многоступенчатый процесс, происходящий во время онтогенеза. Подробно он рассматривается в курсе биологии развития.

    Из книги Расширенный фенотип [Дальнее влияние гена] автора Докинз Клинтон Ричард

    Мошенники, сцепленные с полом Нарушитель расщепления на половой хромосоме – не только мошенник, конфликтующий с остальной частью генома, а потому – субъект подавления модификаторами; он также попутно угрожает всей популяции исчезновением. А всё потому, что в дополнение

    Из книги Племенное разведение собак автора Сотская Мария Николаевна

    ГЛАВА 2 БИОЛОГИЯ ПОЛА. ОПРЕДЕЛЕНИЕ ПОЛА Пол - это совокупность признаков и свойств организма, обеспечивающих его участие в воспроизводстве потомства и передаче наследственной информации за счет образования половых клеток -

    Из книги Новая наука о жизни автора Шелдрейк Руперт

    Глава 7. Наследование формы 7.1. Генетика и наследственность Наследственные различия между организмами, одинаковыми в других отношениях, зависят от генетических различий; эти последние зависят от различий в структуре ДНК или в ее расположении в хромосомах, а эти различия

    Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

    7.7. Наследование приобретенных признаков Влияние предшествующих организмов на последующие подобные организмы путем морфического резонанса может приводить к эффектам, которые невозможно было бы предположить в случае, если наследственность зависит только от передачи

    Из книги Мы и её величество ДНК автора Полканов Федор Михайлович

    Глава 11. Наследование и эволюция поведения 11.1. Наследование поведения Согласно гипотезе формативной причинности, наследование поведения зависит от генетической наследственности, а также от морфогенетических полей, которые контролируют развитие нервной системы и

    Из книги Что, если Ламарк прав? Иммуногенетика и эволюция автора Стил Эдвард

    11.1. Наследование поведения Согласно гипотезе формативной причинности, наследование поведения зависит от генетической наследственности, а также от морфогенетических полей, которые контролируют развитие нервной системы и всего животного в целом, а также от моторных

    Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора Марков Александр Владимирович

    Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

    Сцепленные с полом признаки Нет правил без исключений, и в то же время исключения, как не что иное, правила подтверждают; с этим в генетике приходится сталкиваться очень часто. В самом деле: мы говорили о законе свободного комбинирования признаков, а потом вдруг

    Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

    «Направленные мутации» и наследование соматических мутаций Мы описали протекающий в В-лимфоцитах процесс обратной связи V(D)J-генов, основанный на склонной к ошибкам обратной транскрипции. Он составляет основу определяемого антигеном мутирования генов антител. Все

    Из книги автора

    Наследование соматических мутаций Итак, мы можем спросить, есть ли польза от антигензависимых соматических событий (мутаций и отбора) для ДНК-последовательностей V-генов зародышевой линии следующих поколений? В предьщущей главе мы уже рассказали, как много появляется

    Из книги автора

    Наследование мозолистых утолщений Сейчас мы рассмотрим некоторые явления наследования анатомических признаков в экспериментах, проведенных природой. Некоторые из них детально описаны Джоунзом в его книге 1943 г. Поскольку животные «сами приноравливают себя к условиям

    Из книги автора

    Эпигенетическое наследование Нашу экспериментальную и теоретическую работу по «ретрогенетике» V-генов иммунной системы можно рассматривать как пример жесткого наследования, затрагивающего генетическую информацию, воплощенную в последовательности оснований ДНК.

    Из книги автора

    Возникновение и наследование модификаций на примере Metazoon Еще один важный теоретический вопрос, который можно рассмотреть на нашем примере с Metazoon, - это вопрос о возникновении адаптивных модификаций. Так называют способность организма более или менее осмысленно (то

    Из книги автора

    Эпигенетическое наследование Недавно открыто еще несколько молекулярных механизмов, которые в принципе могут служить для передачи по наследству приобретенных признаков. Эти механизмы не связаны напрямую с изменениями самого «текста», записанного в структуре молекул

    Из книги автора

    29. Генетика пола Вспомните!Каково соотношение мужчин и женщин в человеческой популяции?Что вам известно об определении пола из предыдущих курсов биологии?Какие организмы называют гермафродитными?Проблема взаимоотношения полов, морфологические и физиологические

    Из книги автора

    Наследование, сцепленное с полом В предыдущих двух случаях, когда мы рассматривали наследование врожденных аномалий по доминантному и по рецессивному типу, предполагалось, что мутации затрагивают аутосомы (греч. autos - сам и soma - тело), то есть находятся не в половых