Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Использование попутного нефтяного газа. Природные и попутные газы

    Использование попутного нефтяного газа. Природные и попутные газы

    Попутный нефтяной газ

    Попутный нефтяной газ (ПНГ ) - смесь различных газообразных углеводородов , растворенных в нефти ; они выделяются в процессе добычи и перегонки (это так называемые попутные газы , главным образом состоят из пропана и изомеров бутана). К нефтяным газам также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена , ацетилена) углеводородов. Нефтяные газы применяют как топливо и для получения различных химических веществ. Из нефтяных газов путем химической переработки получают пропилен , бутилены , бутадиен и др., которые используют в производстве пластмасс и каучуков .

    Состав

    Попутный нефтяной газ - смесь газов, выделяющаяся из углеводородов любого фазового состояния, состоящая из метана , этана , пропана , бутана и изобутана , содержащая растворенные в ней высокомолекулярные жидкости (от пентанов и выше по росту гомологического ряда) и различного состава и фазового состояния примеси.

    Приблизительный состав ПНГ

    Получение

    ПНГ является ценным углеводородным компонентом, выделяющимся из добываемых, транспортируемых и перерабатываемых содержащих углеводороды минералов на всех стадиях инвестиционного цикла жизни до реализации готовых продуктов конечному потребителю. Таким образом, особенностью происхождения нефтяного попутного газа является то, что он выделяется на любой из стадий от разведки и добычи до конечной реализации, из нефти, газа, (другие источники опущены) и в процессе их переработки из любого неполного продуктового состояния до любого из многочисленных конечных продуктов.

    Специфической особенностью ПНГ является обычно незначительный расход получаемого газа, от 100 до 5000 нм³/час . Содержание углеводородов С З + может изменяться в диапазоне от 100 до 600 г/м³ . При этом состав и количество ПНГ не является величиной постоянной. Возможны как сезонные, так и разовые колебания (нормальное изменение значений до 15 %).

    Газ первой ступени сепарации, как правило, отправляется непосредственно на газоперерабатывающий завод. Значительные трудности возникают при попытках использовать газ с давлением менее 5 бар . До недавнего времени такой газ в подавляющем большинстве случаев просто сжигался на факелах, однако, сейчас ввиду изменений политики государства в области утилизации ПНГ и ряда других факторов ситуация значительно изменяется. В соответствии с Постановлением Правительства России от 8 января 2009 г. № 7 «О мерах по стимулированию сокращения загрязнения атмосферного воздуха продуктами сжигания попутного нефтяного газа на факельных установках» был установлен целевой показатель сжигания попутного нефтяного газа в размере не более 5 процентов от объема добытого попутного нефтяного газа. В настоящий момент объемы добываемого, утилизируемого и сжигаемого ПНГ невозможно оценить в связи с отсутствием на многих месторождениях узлов учета газа. Но по приблизительным оценкам это порядка 25 млрд м³ .

    Пути утилизации

    Основными путями утилизации ПНГ являются переработка на ГПЗ, генерация электроэнергии, сжигание на собственные нужды, закачка обратно в пласт для интенсификации нефтеотдачи (поддержание пластового давления), закачка в добывающие скважины - использование «газлифта».

    Технология утилизации ПНГ

    Газовый факел в западносибирской тайге в начале 1980-х годов

    Основная проблема при утилизации попутного газа заключается в высоком содержании тяжелых углеводородов . На сегодняшний день существует несколько технологий, повышающих качество ПНГ за счет удаления значительной части тяжелых углеводородов. Одна из них - подготовка ПНГ с помощью мембранных установок. При применении мембран метановое число газа значительно повышается, низшая теплотворная способность (LHV), тепловой эквивалент и температура точки росы (как по углеводородам, так и по воде) снижаются.

    Мембранные углеводородные установки позволяют значительно снизить концентрацию сероводорода и диоксида углерода в потоке газа, что позволяет использовать их для очистки газа от кислых компонентов.

    Конструкция

    Схема распределния газовых потоков в мембранном модуле

    По своей конструкции углеводородная мембрана представляет собой цилиндрический блок с выходами пермеата, продуктового газа и входа ПНГ. Внутри блока находится трубчатая структура селективного материала, который пропускает только определенный вид молекул. Общая схема потока внутри картриджа показана на рисунке.

    Принцип работы

    Конфигурация установки в каждом конкретном случае определяется специально, так как исходный состав ПНГ может сильно разниться.

    Схема установки в принципиальной конфигурации:

    Напорная схема подготовки ПНГ

    Вакуумная схема подготовки ПНГ

    • Предварительный сепаратор для очистки от грубых примесей, крупной капельной влаги и нефти,
    • Ресивер на входе,
    • Компрессор,
    • Холодильник для доохлаждения газа до температуры от +10 до +20 °C,
    • Фильтр тонкой очистки газа от масла и парафинистых соединений,
    • Углеводородный мембранный блок ,
    • КИПиА,
    • Система управления, включая поточный анализ,
    • Система утилизации конденсата (из сепараторов),
    • Система утилизации пермеата,
    • Контейнерная поставка.

    Контейнер должен быть изготовлен в соответствии с требованиями пожаро- взровобезопасности в нефтяной и газовой промышленности.

    Существует две схемы подготовки ПНГ: напорная и вакуумная.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Характеристика ПНГ

    Попутный нефтяной газ (ПНГ) - это природный углеводородный газ, растворенный в нефти или находящийся в «шапках» нефтяных и газоконденсатных месторождений.

    В отличие от известного всем природного газа попутный нефтяной газ содержит в своем составе кроме метана и этана большую долю пропанов, бутанов и паров более тяжелых углеводородов. Во многих попутных газах, в зависимости от месторождения, содержатся также неуглеводородные компоненты: сероводород и меркаптаны, углекислый газ, азот, гелий и аргон.

    При вскрытии нефтяных пластов обычно сначала начинает фонтанировать газ нефтяных «шапок». Впоследствии основную часть добываемого попутного газа составляют газы, растворенные в нефти. Газ газовых «шапок», или свободный газ, является более «легким» по составу (с меньшим содержанием тяжелых углеводородных газов) в отличие от растворенного в нефти газа. Таким образом начальные стадии освоения месторождений обычно характеризуются большими ежегодными объемами добычи попутного нефтяного газа с большей долей метана в своем составе. При длительной эксплуатации месторождения дебет попутного нефтяного газа сокращается и большая доля газа приходится на тяжелые составляющие.

    Попутный нефтяной газ является важным сырьем для энергетики и химической промышленности. ПНГ имеет высокую теплотворную способность, которая колеблется в пределах от 9 000 до 15 000 Ккал/ м3, но его использование в энергогенерации затрудняется нестабильностью состава и наличием большого количества примесей, что требует дополнительных затрат на очистку («осушку») газа. В химической промышленности содержащиеся в ПНГ метан и этан используются для производства пластических масс и каучука, а более тяжелые элементы служат сырьем при производстве ароматических углеводородов, высокооктановых топливных присадок и сжиженных углеводородных газов, в частности, сжиженного пропан-бутана технического (СПБТ).

    ПНГ в цифрах

    В России ежегодно по официальным данным извлекается около 55 млрд. м3 попутного нефтяного газа. Из них порядка 20-25 млрд. м3 сжигается на месторождениях и лишь порядка 15-20 млрд. м3 используется в химической промышленности. Большая часть сжигаемого ПНГ приходится на новые и труднодоступные месторождения Западной и Восточной Сибири.

    Важным показателем для каждого нефтяного месторождения является газовый фактор нефти - количество попутного нефтяного газа, приходящегося на одну тонну добываемой нефти. Для каждого месторождения этот показатель индивидуален и зависит от природы месторождения, характера его эксплуатации и длительности разработки и может составлять от 1-2 м3 до нескольких тысяч м3 на одну тонну.

    Решение проблемы утилизации попутного газа - это не только вопрос экологии и ресурсосбережения, это еще и потенциальный национальный проект стоимостью $10 - $15 млрд. Попутный нефтяной газ - ценнейшее топливно-энергетическое и химическое сырье. Только утилизация объемов ПНГ, переработка которых является экономически рентабельной при текущей конъюнктуре рынка, позволила бы ежегодно производить до 5-6 млн. тонн жидких углеводородов, 3-4 млрд.м.куб. этана, 15-20 млрд.м.куб. сухого газа или 60 - 70 тыс. ГВт*ч электроэнергии. Возможный суммарный эффект составит до $10 млрд./год в ценах внутреннего рынка или почти 1% ВВП Российской Федерации.

    В Республике Казахстан проблема утилизации ПНГ не менее остра. В настоящее время по официальным данным из 9 млрд. куб.м. ежегодно добываемого в стране ПНГ утилизируется только две трети. Объем сжигаемого газа достигает 3 млрд. куб.м. в год. Более четверти работающих в стране нефтедобывающих предприятий сжигают более 90% добываемого ПНГ. На попутный нефтяной газ приходится почти половина всего добываемого в стране газа и темпы роста добычи ПНГ на данный момент опережают темпы роста добычи природного газа.

    Проблема утилизации ПНГ

    Проблема утилизации попутного нефтяного газа была унаследована Россией еще с советских времен, когда упор в развитии зачастую делался на экстенсивные методы развития. При развитии нефтеносных провинций во главу угла ставился рост объемов добычи сырой нефти, основного источника доходов национального бюджета. Расчет делался на гигантские месторождения, крупные производства и минимизацию издержек. Переработка попутного нефтяного газа, с одной стороны, оказывалась на заднем плане ввиду необходимости осуществления существенных капитальных вложений в относительно менее рентабельные проекты, с другой стороны, в крупнейших нефтяных провинциях создавались разветвленные газосборные системы и строились гигантские ГПЗ под сырье с ближайших месторождений. Последствия подобной гигантомании мы наблюдаем в настоящее время.

    Традиционно принятая в России еще с советских времен схема утилизации попутного газа предполагает строительство крупных газоперерабатывающих заводов совместно с разветвленной сетью газопроводов для сбора и доставки попутного газа. Реализация традиционных схем утилизации требует значительных капитальных затрат и времени и, как показывает опыт, практически всегда на несколько лет не успевает за освоением месторождений. Использование данных технологий экономически эффективно лишь на крупных производствах (миллиарды м.куб. исходного газа) и экономически необоснованно на средних и мелких месторождениях.

    Другим недостатком этих схем является неспособность по техническим и транспортным причинам утилизировать попутный газ концевых ступеней сепарирования ввиду его обогащения тяжелыми углеводородами - такой газ не может перекачиваться по трубопроводам и обычно сжигается в факелах. Поэтому даже на обустроенных газопроводами месторождениях продолжают сжигать попутный газ концевых ступеней сепарирования.

    Основные потери нефтяного газа формируются в основном за счет мелких, малых и средних удаленных месторождений, доля которых в нашей стране продолжает стремительно увеличиваться. Организация сбора газа с таких месторождений, как это было показано выше, по схемам, предложенным для строительства крупных газоперерабатывающих заводов, является весьма капиталоемким и неэффективным мероприятием.

    Даже в регионах, где находятся ГПЗ, и существует разветвленная газосборная сеть, газоперерабатывающие предприятия стоят загруженными на 40-50%, а вокруг них горят десятки старых и зажигаются новые факела. Обусловлено это действующими нормами регулирования в отрасли и недостатком внимания к проблеме, как со стороны нефтяников, так и со стороны газопереработчиков.

    В советские времена развитие газосборной инфраструктуры и поставки ПНГ на газоперерабатывающие заводы осуществлялись в рамках плановой системы и финансировались в соответствии с единой программой развития месторождений. После развала Союза и формирования независимых нефтяных компаний инфраструктура сбора и доставки ПНГ до заводов осталась в руках газопереработчиков, а источники газа, естественно, контролировались нефтяниками. Возникла ситуация монополизма покупателя, когда у нефтяных компаний, фактически, не осталось альтернатив утилизации попутного нефтяного газа, кроме как его сдача в трубу для транспортировки на ГПЗ. Более того, государством были законодательно установлены на заведомо низком уровне цены сдачи попутного газа на ГПЗ. С одной стороны это позволило газоперерабатывающим заводам выжить и даже хорошо себя чувствовать в бурные 90-е, с другой, лишило нефтяные компании стимула инвестировать в строительство газосборной инфраструктуры на новых месторождениях и поставлять попутный газ на существующие предприятия. В результате Россия имеет сейчас одновременно простаивающие мощности по переработке газа и десятки факелов отапливающего воздух сырья.

    В настоящее время Правительством РФ в соответствии с утвержденным Планом мероприятий по развитию промышленности и технологий на 2006-2007г.г. разрабатывается Постановление о включении в лицензионные соглашения с недропользователями обязательных требований по строительству производственных мощностей по переработке попутного нефтяного газа, образующегося при добыче нефти. Рассмотрение и принятие постановления состоится во втором квартале 2007г.

    Очевидно, что реализация положений указанного документа повлечет для недропользователей необходимость привлечения значительных финансовых ресурсов в проработку вопросов утилизации факельного газа и строительства соответствующих объектов с необходимой инфраструктурой. При этом требуемые капитальные вложения в создаваемые производственные комплексы переработки газа в большинстве случае превышают стоимость объектов нефтяной инфраструктуры, существующей на месторождении.

    Необходимость столь значительных дополнительных вложений в непрофильную и менее рентабельную для нефтяных компаний часть бизнеса, по нашему мнению, неизбежно вызовет сокращение инвестиционной деятельности недропользователей, направленной на поиск, разработку, обустройство новых месторождений и интенсификацию добычи основного и наиболее рентабельного продукта - нефти, либо может привести к невыполнению требований лицензионных соглашений со всеми вытекающими последствиями. Альтернативным выходом в разрешении ситуации с утилизацией факельного газа, по нашему мнению, является привлечение специализированных управляющих сервисных компаний, способных быстро и эффективно реализовывать подобные проекты без привлечения финансовых средств недропользователей.

    газ нефтяной газоперерабатывающий углеводородный

    Экологические аспекты

    Сжигание попутного нефтяного газа - серьезная экологическая проблема как для самих нефтедобывающих регионов, так и для глобальной окружающей среды.

    Ежегодно в России и Казахстане в результате сжигания попутных нефтяных газов в атмосферу попадает более миллиона тонн загрязняющих веществ, включая углекислый газ, диоксид серы и сажевые частицы. Выбросы, образующиеся при сжигании попутных нефтяных газов составляют 30% от всех выбросов в атмосферу в Западной Сибири, 2% от выбросов от стационарных источников в России и до 10% суммарных атмосферных выбросов Республики Казахстан.

    Необходимо также принять во внимание негативное влияние теплового загрязнения, источником которого являются нефтяные факела. Западная Сибирь России - один из немногих малонаселенных регионов мира, огни которого можно видеть ночью из космоса наряду с ночным освещением крупнейших городов Европы, Азии и Америки.

    Особенно актуальной при этом проблема утилизации ПНГ видится на фоне ратификации Россией Киотского протокола. Привлечение средств европейских углеродных фондов под проекты тушения факелов позволило бы профинансировать до 50% требуемых капитальных затрат и существенно повысить экономическую привлекательность данного направления для частных инвесторов. Уже по итогам 2006-го года объем углеродных инвестиций, привлеченных компаниями Китая в рамках Киотского протокола, превысил $6 млрд., притом, что такие страны как Китай, Сингапур или Бразилия не брали на себя обязательств по сокращению выбросов. Дело в том, что только для них существует возможность продавать сокращенные выбросы по так называемому "механизму чистого развития", когда оценивается сокращение потенциальных, а не реальных выбросов. Отставание России в вопросах законодательного оформления механизмов оформления и передачи углеродных квот будет стоить отечественным компаниям миллиардов долларов недополученных инвестиций.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Пути утилизации попутного нефтяного газа. Использование сжигания попутного нефтяного газа для отопительной системы, горячего водоснабжения, вентиляции. Устройство и принцип работы. Расчет материального баланса. Физическое тепло реагентов и продуктов.

      реферат , добавлен 10.04.2014

      Использование попутного нефтяного газа (ПНГ) и его влияние на природу и человека. Причины неполного использования ПНГ, его состав. Наложение штрафов за сжигание ПНГ, применение ограничений и повышающих коэффициентов. Альтернативные пути использования ПНГ.

      реферат , добавлен 20.03.2011

      Понятие нефтяных попутных газов как смеси углеводородов, которые выделяются вследствие снижения давления при подъеме нефти на поверхность Земли. Состав попутного нефтяного газа, особенности его переработки и применения, основные способы утилизации.

      презентация , добавлен 10.11.2015

      Общее описание газотурбинной электростанции. Внедрение улучшенной системы регулирования на подогреве попутного нефтяного газа, расчет для этой системы коэффициентов регулирования. Описание физических процессов при подогреве попутного нефтяного газа.

      дипломная работа , добавлен 29.04.2015

      Компрессоры, используемые для транспортировки газов. Предел взрываемости нефтяного газа. Расчет годового экономического эффекта от внедрения блочных компрессорных установок для компрессирования и транспорта нефтяного газа. Удельный вес газа на нагнетании.

      курсовая работа , добавлен 28.11.2010

      Организационная структура ОАО "Самотлорнефтегаз", история создания и развития компании. Характеристика разрабатываемых месторождений; освоение и перспективы их разработки. Способы эксплуатации нефтяного месторождения. Системы сбора нефти и газа.

      отчет по практике , добавлен 25.03.2014

      Меры и оборудование для предупреждения попадания флюидов и попутного нефтяного газа в окружающую среду. Оборудование для предупреждения открытых фонтанов. Комплексы управления скважинными клапанами-отсекателями. Охрана труда и окружающей среды скважин.

      дипломная работа , добавлен 27.02.2009

      Попутный нефтяной газ как смесь газов и парообразных углеводородистых и не углеводородных компонентов природного происхождения, особенности его использования и утилизации. Сепарация нефти от газа: сущность, обоснование данного процесса. Типы сепараторов.

      курсовая работа , добавлен 14.04.2015

      Основные проектные решения по разработке Барсуковского месторождения. Состояние разработки и фонда скважин. Понятия о сборе, транспорте и подготовке нефти и газа на месторождении. Характеристика сырья, вспомогательных материалов и готовой продукции.

      курсовая работа , добавлен 26.08.2010

      Анализ газовых горелок: классификация, подача газа и воздуха к фронту горения газа, смесеобразование, стабилизация фронта воспламенения, обеспечение интенсивности горения газа. Применения систем частичной или комплексной автоматизации сжигания газа.

    ПРИМЕНЕНИЕ ГАЗА

    Газ может находиться в природе в залежах трех типов: газовых, газонефтяных и газоконденсатных.

    В залежах первого типа - газовых - газ образует огромные естественные подземные скопления, не имеющие непосредственной связи с нефтяными месторождениями.

    В залежах второго типа - газонефтяных - газ сопровождает нефть или нефть сопровождает газ. Газонефтяные залежи, как указано выше, бывают двух типов: нефтяные с газовой шапкой (в них основной объем занимает нефть) и газовые с нефтяной оторочкой (основной объем занимает газ). Каждая газонефтяная залежь характеризуется га­зовым фактором - количеством газа (в м 3), приходящимся на 1000 кг нефти.

    Газоконденсатные залежи характеризуются высоким давлением (более 3–10 7 Па) и высокими температурами (80–100°С и выше) в пласте. В этих условиях в газ переходят углеводороды С 5 и выше, а при снижении давления происходит конденсация этих углеводородов - процесс обратной конденсации.

    Газы всех рассмотренных залежей называются природ­ными газами, в отличие от попутных нефтяных газов, растворенных в нефти и выделяющихся из нее при добыче.

    Природные газы

    Природные газы состоят в основном из метана. Наряду с метаном в них обычно содержатся этан, пропан, бутан, небольшое количество пентана и высших гомологов и незначительные количества неуглеводородных компонентов: углекислого газа, азота, сероводо­рода и инертных газов (аргона, гелия и др.).

    Углекислый газ, который обычно присутствует во всех природных газах, является одним из главных продуктов превращения в природе органического исходного вещества углеводородов. Его содержание в природном газе ниже, чем можно было бы ожидать, исходя из механизма химических превращений органических остатков в при­роде, так как углекислый газ - активный компонент, он переходит в пластовую воду, образуя растворы бикарбонатов. Как правило, содержание углекислого газа не превышает 2,5%. Содержание азота, также обычно присутствующего в природных, связано либо с попаданием атмосферного воздуха, либо с реакциями распада белков живых организмов. Количество азота обычно выше в тех случаях, когда образование газового место­рождения происходило в известняковых и гипсовых породах.

    Особое место в составе некоторых природных газов занимает гелий. В природе гелий встречается часто (в воздухе, природном газе и др.), но в ограниченных количествах. Хотя содержание гелия в природном газе невелико (максимально до 1–1,2%), выделение его оказывается выгодным из-за большого дефицита этого газа, а также благодаря большому объему добычи природного газа.

    Сероводород, как правило, отсутствует в газовых залежах. Исключение составляет, например, Усть-Вилюйская залежь, где содержание H 2 S достигает 2,5%, и некоторые другие. По-видимому, наличие сероводорода в газе связано с составом вмещающих пород. Замечено, что газ, находящийся в контакте с сульфатами (гипсом и др.) или сульфитами (пирит), содержит относительно больше серо­водорода.

    Природные газы, содержащие в основном метан и имеющие очень незначительное содержание гомологов С 5 и выше, относят к сухим или бедным газам. К сухим относится подавляющее большинство газов, добываемых из газовых залежей. Газ газоконденсатных залежей отличается меньшим содержанием метана и по­вышенным содержанием его гомологов. Такие газы называются жирными или богатыми. В газах газоконденсатных залежей, помимо легких углеводородов, содержатся и высококипящие гомологи, которые при снижении давления выделяются в жидком виде (конденсат). В зависимости от глубины скважины и давления на забое в газообразном состоянии могут находиться углеводороды, кипящие до 300–400°С.

    Газ газоконденсатных залежей характеризуется содержанием выпавшего конденсата (в см 3 на 1 м 3 газа).

    Образование газоконденсатных залежей связано с тем, что при больших давлениях происходит явление обратного растворения - обратной конденсации нефти в сжатом газе. При давлениях около 75×10 6 Па нефть растворяется в сжатом этане и пропане, плотность которых при этом значительно превышает плотность нефти.

    Состав конденсата зависит от режима эксплуатации скважины. Так, при поддержании постоянного пластового давления качество конденсата стабильно, но при уменьшении давления в пласте состав и количество конденсата изменяются.

    Состав стабильных конденсатов некоторых месторождений хо­рошо изучен. Конец кипения их обычно не выше 300°С. По групповому составу: большую часть составляют метановые углеводороды, несколько меньше - нафтено­вые и еще меньше - ароматические. Состав газов газоконденсатных месторождений после отделения конденсата близок к составу сухих газов. Плотность природного газа относительно воздуха (плотность воздуха принята за единицу) колеблется от 0,560 до 0,650. Теплота сгорания около 37700–54600 Дж/кг.

    Попутные (нефтяные) газы

    Попутным газом называется не весь газ данной залежи, а газ, растворенный в нефти и выделяющийся из нее при добыче.

    Нефть и газ по выходе из скважины проходят через газосепараторы, в которых попутный газ отделяется от не­стабильной нефти, направляемой на дальнейшую переработку.

    Попутные газы являются ценным сырьем для промышленного нефтехимического синтеза. Качественно они не отличаются по составу от природных газов, однако количественное отличие весьма существенное. Содержание метана в них может не превышать 25–30%, зато значительно больше его гомологов - этана, пропана, бутана и высших углеводородов. Поэтому эти газы относят к жирным.

    В связи с различием в количественном составе попутных и при­родных газов их физические свойства различны. Плотность (по воз­духу) попутных газов выше, чем природных, - она достигает 1,0 и более; теплота сгорания их составляет 46000–50000 Дж/кг.

    Применение газа

    Одна из главных областей применения углеводородных газов - это использование их в качестве топлива. Высокая теплота сгорания, удобство и экономичность использования бесспорно ставят газ на одно из первых мест среди других видов энергетических ресурсов.

    Другой важный вид использования попутного нефтяного газа - его отбензинивание, т. е. извлечение из него газового бензина на газоперерабатывающих заводах или установках. Газ подвергается при помощи мощных компрессоров сильному сжатию и охлаждению, при этом пары жидких углеводородов конденсируются, частично растворяя газообразные углеводороды (этан, пропан, бутан, изобутан). Образуется летучая жидкость - нестабильный газовый бензин, который легко отделяется от остальной неконденсирующейся массы газа в сепараторе. После фракционирования - отделения этана, пропана, части бутанов - получается стабильный газовый бензин, который используют в качестве добавки к товарным бензи­нам, повышающей их испаряемость.

    Освобождающиеся при стабилизации газового бензина пропан, бутан, изобутан в виде сжиженных газов, нагнетаемых в баллоны, применяются в качестве горючего. Метан, этан, пропан, бутаны служат также сырьем для нефтехимической промышленности.

    После отделения С 2 -С 4 из попутных газов оставшийся отрабо­танный газ близок по составу к сухому. Практически его можно рассматривать как чистый метан. Сухой и отработанный газы при сжигании в присутствии незначительных количеств воздуха в спе­циальных установках образуют очень ценный промышленный про­дукт - газовую сажу:

    CH 4 + O 2 à C + 2H 2 O

    Она применяется главным образом в резиновой промышленности. Пропусканием метана с водяным паром над никелевым катализатором при температуре 850°С получают смесь водорода и окиси угле­рода - «синтез - газ»:

    CH 4 + H 2 O à CO + 3H 2

    При пропускании этой смеси над катализатором FeO при 450°С окись углерода превращается в двуокись и выделяется дополни­тельное количество водорода:

    CO + H 2 O à CO 2 + H 2

    Полученный при этом водород применяют для синтеза аммиака. При обработке хлором и бромом метана и дру­гих алканов получаются продукты замещения:

    1. СН 4 + Сl 2 à СН 3 С1 +НСl - хлористый метил;

    2. СН 4 + 2С1 2 à СН 2 С1 2 + 2НС1 - хлористый метилен;

    3. CH 4 + 3Cl 2 à CHCl 3 + 3HCl - хлороформ;

    4. CH 4 + 4Cl 2 à CCl 4 + 4HCl - четыреххлористый углерод.

    Метан служит также сырьем для получения синильной кислоты:

    2СH 4 + 2NH 3 + 3O 2 à 2HCN + 6H 2 O, а также для производства сероуглерода CS 2 , нитрометана CH 3 NO 2 , который используется как растворитель для лаков.

    В отличие от природного газа попутный нефтяной газ содержит в своем составе кроме метана и этана большую долю пропанов, бутанов и паров более тяжелых углеводородов. Во многих попутных газах, в зависимости от месторождения, содержатся также неуглеводородные компоненты: сероводород и меркаптаны, углекислый газ, азот, гелий и аргон.

    При вскрытии нефтяных пластов обычно сначала начинает фонтанировать газ нефтяных «шапок». Впоследствии основную часть добываемого попутного газа составляют газы, растворенные в нефти. Газ газовых «шапок», или свободный газ, является более «легким» по составу (с меньшим содержанием тяжелых углеводородных газов) в отличие от растворенного в нефти газа. Таким образом, начальные стадии освоения месторождений обычно характеризуются большими ежегодными объемами добычи попутного нефтяного газа с большей долей метана в своем составе. При длительной эксплуатации месторождения дебет попутного нефтяного газа сокращается, и большая доля газа приходится на тяжелые составляющие.

    Закачка в недра для повышения пластового давления и, тем самым, эффективности добычи нефти. Однако в России, в отличие от ряда зарубежных стран, этот метод за редким исключением не используется, т. к. это высоко затратный процесс.

    Использование на местах для выработки электроэнергии, идущей на нужды нефтепромыслов.

    При выделении значительных и устойчивых объемов попутного нефтяного газа - использование в качестве топлива на крупных электростанциях, либо для дальнейшей переработки.

    Наиболее эффективный способ утилизации попутного нефтяного газа - его переработка на газоперерабатывающих заводах с получением сухого отбензиненного газа (СОГ), широкой фракции легких углеводородов (ШФЛУ), сжиженных газов (СУГ) и стабильного газового бензина (СГБ).

    Крупная консалтинговая компания в сфере ТЭКа PFC Energy в исследовании "Утилизация попутного нефтяного газа в России" отметила, что оптимальный вариант использования ПНГ зависит от размера месторождения. Так, для малых месторождений наиболее привлекательным вариантом является выработка электроэнергии в малых масштабах для собственных промысловых нужд и нужд других местных потребителей.

    Для средних месторождений , по оценкам исследователей, наиболее экономически целесообразным вариантом утилизации попутного нефтяного газа является извлечение сжиженного нефтяного газа на газоперерабатывающем заводе и продажа сжиженного нефтяного газа (СНГ) или нефтехимической продукции и сухого газа.

    Для крупных месторождений наиболее привлекательным вариантом является генерирование электроэнергии на крупной электростанции для последующей оптовой продажи в энергосистему.

    По мнению экспертов, решение проблемы утилизации попутного газа - это не только вопрос экологии и ресурсосбережения, это еще и потенциальный национальный проект стоимостью 10- 15 млрд долларов. Только утилизация объемов ПНГ позволила бы ежегодно производить до 5- 6 млн тонн жидких углеводородов, 3- 4 млрд кубометров этана, 15- 20 млрд кубометров сухого газа или 60- 70 тысяч ГВт/ч электроэнергии.

    Президент РФ Дмитрий Медведев дал поручение правительству РФ принять меры по прекращению практики нерационального использования попутного газа к 1 февраля 2010 года.

    Попутный нефтяной газ (associated gas) определяется как газ, растворённый в нефти, который извлекается из недр совместно с нефтью и отделяется от неё путём многоступенчатой сепарации на объектах добычи и подготовки нефти: дожимных насосных станциях (ДНС), установках сепарации нефти, установках подготовки нефти (УПН), центральных пунктах подготовки нефти до товарной кондиции (ЦППН). Выделение ПНГ происходит непосредственно в сепараторах нефти, установленных на данных объектах. Количество ступеней сепарации зависит от качества добываемой нефти, пластового давления и температуры флюида. Обычно на объектах подготовки нефти применяют две ступени сепарации, изредка одну или, наоборот, три (концевые) ступени сепарации.

    Компонентный состав попутного нефтяного газа представляет собой смесь различных газообразных и жидких (находящихся в нестабильном состоянии) углеводородов, начиная от метана и заканчивая его гомологами вплоть до С10+, а также не углеводородных газов (H2, S, N2, He, СO2, меркаптанов) и других веществ. С каждой последующей ступенью сепарации выделяющийся из нефти газ становится более плотным (иногда даже более 1700 г/м 3) и калорийным (до 14000 ккал/ м 3), содержащим в своём составе свыше 1000 г/м 3 углеводородов С3+. Связано это с уменьшением давления в сепараторе концевой ступени (менее 0,1 кгс/см 2 .) и повышением температуры подготовки нефти (до 65ч70 0 С), что способствует переходу лёгких компонентов нефти в газообразное состояние.

    Большинство попутных, особенно низконапорных газов, относятся к категории жирных и особо жирных. С лёгкой нефтью обычно добывают более жирные газы, с тяжёлыми нефтями - в основном сухие (тощие и средние) газы. С увеличением содержания углеводородов С3+ возрастает ценность попутного нефтяного газа. В отличие от природного газа, имеющего в своём составе до 98% метана, сфера применения нефтяного газа гораздо шире. Ведь этот газ можно использовать не только для получения тепловой или электрической энергии, но и как ценное сырьё для нефтегазохимии. Ассортимент продукции, которую возможно получить из попутного газа физическим разделением, достаточно широк:

    • - Сухой отбензиненный газ (СОГ);
    • - Широкая фракция лёгких углеводородов (ШФЛУ);
    • - Стабильный газовый бензин;
    • - Газовое моторное топливо (автомобильный пропан-бутан);
    • - Сжиженный нефтяной газ (СНГ) для коммунально-бытовых нужд;
    • - Этан и другие узкие фракции, в том числе индивидуальные углеводороды (пропан, бутаны, пентаны).

    Кроме этого из ПНГ могут быть выделены азот, гелий, сернистые соединения. Стоит отметить, что при каждом последующем переделе, где исходным сырьём будут служить продукты предыдущего передела, например:

    Где ценность новой продукции будет многократно возрастать.

    Что касается 95%-ного уровня использования ПНГ, то здесь тоже стоит обратить внимание на существующий подход к решению проблемы. В России на каждом лицензионном участке требуется использовать 95% всего объёма извлечённого попутного нефтяного газа вне зависимости от того, большое месторождение или маленькое, с существующей инфраструктурой или нет. В советский период государство само устанавливало высокие уровни использования попутного газа и само выделяло средства на строительство соответствующих объектов. Эффективность мероприятий рассчитывалась без возврата инвестиций и без процента ставок за кредиты. Объекты по использованию ПНГ считались экологическими и имели налоговые льготы. И, кстати, уровень использования ПНГ успешно увеличивался. Сегодня ситуация обстоит иначе. Нефтяные компании теперь вынуждены самостоятельно заниматься вопросами повышения уровня использования ПНГ, что часто влечёт за собой необходимость строительства неэффективных объектов и, возможно, даже без возврата капиталовложений от проведения данных мероприятий. Причина проста: на старых обустроенных месторождениях с развитой инфраструктурой объёмы ПНГ используются в большинстве случаев на 95% (в основном, поставка на ГПЗ), в отличие от новых, удалённых месторождений, которые сейчас вводятся в разработку всё больше и больше ввиду истощения запасов на старых. Естественно, новые нефтяные месторождения должны быть связаны между собой газотранспортной системой, должны быть построены объекты для подготовки и переработки газа, получения продуктов газовой химии, т. е., должно быть повышение уровней "передела" нефтяного газа с целью более эффективной экономической деятельности.