Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Что такое оперативное время при нормировании
  • Изготовление серы. Серная промышленность. Перспективы производства серы

    Изготовление серы. Серная промышленность. Перспективы производства серы

    Сера молотая кормовая — мелкий бледно-желтый порошок, нерастворимый в воде, растворим в некоторых маслах при нагревании на водяной бане. В сухом виде не влияет на организм. В присутствии влаги, щелочей или органических кислот образует сероводород, сернистый ангидрид, диоксид серы и др. Используется как один из основных компонентов кормовых и лечебных смесей. В организме животных сера находится в виде сложных органических соединений. Серосодержащие соединения играют важную роль в выработке энергии, свертывании крови, в синтезе коллагена, основного белка, который образует основу для костей, волокнистых тканей, кожи, волос и копыт, а также в образовании ферментов (веществ, ускоряющих химические реакции, которые постоянно происходят в организме). Способствует синтезу некоторых витаминов и серосодержащих аминокислот, благодаря чему способствует улучшению обмена веществ, повышению бактериальной ферментации в птиц, стимулирует рост шерсти, рогов и копыт у животных. Кроме того сера кормовая используется как слабительное, а также как противоядие при отравлении солями тяжелых металлов.

    Применение серы молотой, гранулированной, технической и кормовой в различных отраслях промышленности

    Техническая сера используется для промышленного производства серной кислоты, сероуглерода, красителей, текстильной продукции и тому подобное.

    По разным данным, примерно половина полученной серы комовой используется на производство серной кислоты и минеральных удобрений. В технологии производства серной кислоты сера — основной промышленный химический реактив. Применение этого реактива в производстве удобрений имеет важное значение для получения полноценного минерального удобрения. Также используется для переработки, очистки сточных вод, добычи полезных ископаемых, для производства спичек, в целлюлозно-бумажной промышленности и для производства красок, светящихся в темноте (люминесцентных и флуоресцентных). Сера комовая применяется в производстве серной пенопласта, новых асфальтовых покрытий, сиркобетону — особо прочных строительных блоков.

    Диоксид серы SO2 используется как пищевой консервант для защиты кормов для животных от окисления и от бактерий, для производства пищевых красителей и добавок — усилителей вкуса.

    Сульфиды применяются в производстве красок для полиграфии, в качестве флотационных реагентов в цветной металлургии, в целлюлозной промышленности для отбеливания бумаги.

    Использование серы гранулированной как удобрения обеспечивает пополнение запасов серы в почве, и реализуется путем внесения на поверхность почвы гранулированной серы в дозе 140-210 кг / га и сопровождается необходимым количеством поливов за сезон в зависимости от потребности выращиваемой культуры.

    Такой процесс является отличной существенным признаком пополнения запасов серы в почве и в конечном итоге обеспечивает реализацию поставленной цели — получить повышение урожая сельскохозяйственных культур за счет внесения гранул серы.

    Применение серы молотой кормовой

    Сера необходима организму животного. Она входит в состав глутатиона, который играет важную роль в окислительных процессах организма, инсулина — гормона поджелудочной железы и др.

    Добавление серы молотой кормовой в рацион животных способствует:

    При употреблении в пищу сера образует сероводород и сульфит натрия, раздражающие рецепторы кишечника и вызывают слабительный эффект. В кишечнике сероводород частично всасывается и, выделяясь через легкие, действует как отхаркивающее ветзасиб.

    Способы применения серы молотой кормовой:

    При выпадении перьев у кур сера применяется в суточных дозах: взрослым курам 50-100 мг цыплятам 1-2-месячным 12-25 мг 15-30-дневным 8-12 мг 7-15-дневным 3-5 мг.

    Для улучшения обмена веществ суточные дозы с кормом: лошадям и крупному рогатому скоту 2-5 г мелкой рогатому скоту и свиньям 0,5-1 г собакам 0,1-0,2 г кошкам и курам 0,05-0,1 г.

    Как слабительное и антидот: лошадям 100-250 г крупному рогатому скоту 100-300 г мелкой рогатому скоту 50-100 г свиньям 15-25 г собакам 10-15 г.

    Сера молотая кормовая не обладает сенсибилизуючою, эмбриотоксическим, тератогенным и мутагенным действием. Это безопасное, малотоксического соединения для теплокровных животных, входит в состав некоторых витаминов (боитин, тиамин). Еще одна особенность молотой серы — нейтрализует токсическое действие тяжелых металлов в печени и почках животных.

    Для лучшего фугинцидного и актарацидного эффекта следует применять серу при температуре 20-22˚С. Если температура ниже, данные свойства не проявляются и не действует на возбудителей ложной мучной росы.

    Молотый серу применяют в промышленности для получения синтетических волокон, красителей, люминофоров.

    Сера как минеральное удобрение

    Всем хорошо известно, что многие растения, технические и кормовые культуры нуждаются в уходе, подкормка на различных стадиях процесса выращивания. Перед посадкой, в процессе посадки и роста, даже задолго до начала каких-либо действий (для подготовки почвы) необходимо выполнять ряд действий, которые помогут в будущем собрать хороший урожай. И частные фермеры, и крупные аграрные предприятия об этом знают, и каждый по-своему подходит к процессу, используя самые разнообразные средства и схемы их применения. Одним из самых популярных минеральных удобрений является сера. Давайте сейчас попробуем разобраться в выгодах ее применения.

    Что такое сера?

    Сера (серы) — элемент VI группы периодической системы химических элементов с атомным номером 16 и атомным весом 32,065. Сказывается общепринятым символом S. Это желтая кристаллическое вещество, неметалл, что встречается в природе в большом количестве в самородном виде, реже — в виде сульфидов тяжелых металлов. Сульфаты (часть из них) хорошо растворяются и активно участвуют в различных грунтовых процессах.

    В наше время серу получают в различных товарных формах (определяются заказчиком): комовая, жидкая, формируемая, гранулированный, молотый, коллоидная, чистые.

    Применение серы в сельском хозяйстве

    Уже более 180 лет сера активно применяется в сельском хозяйстве. Она признана необходимым компонентом для питания растений (одним из главных, наряду с фосфором, магнием, кальцием …), поэтому в разном количестве входит в состав многих удобрений.

    Сера как важнейший макроэлемент является составной белка, при ее достаточном содержании на растение в полной мере работает азот. Из атмосферы сера поступает в организм растения через листья. Но этого достаточно лишь для обеспечения минимальной потребности культуры в питании. Чтобы это вещество поступало в достаточном количестве, необходимо использовать серосодержащие химические удобрения.

    Что дает сера растениям?

    Во-первых, она является важным участником энергетических, восстановительных процессов. Также они регулируют наличие в письме хлорофилла, активизируют формирование лигнина, укрепляет механические ткани растений.

    Во-вторых, благодаря сере, ее фунгицидного действия, зерновые культуры становятся устойчивыми к болезням, вредителям. Увеличивается качество и количество белка и клейковины в зерне. Как результат — предотвращается полеганию зерновых, увеличивается урожай и улучшаются хлебопекарные качества сырья.

    В-третьих, сера увеличивает содержание сахара в корнеплодах сахарной свеклы, крахмала в клубнях картофеля, а в овощах уменьшает количество опасных нитратов.

    В-четвертых, сера помогает регулировать наличие и формы других веществ в растении, таких как: фосфор, калий, кальций, магний и железо. Например, под ее влиянием фосфор превращается из труднодоступных в легкодоступные соединения, таким образом, улучшается его усвояемость.

    Купить серу молотую оптом можно на сайте ЧП Система Оптимум. Компания поставляет на рынок Украины разные типы этого вещества не только для сельского хозяйства, но и для других отраслей промышленности. Комова, техническая, гранулированная сера в наличии в больших объемах, чтобы каждый клиент смог получить необходимое количество удобрений.

    Основной тип упаковки — мешки по 30 кг. Доставку осуществляем собственным транспортом или перевозчиками. Также возможен самовывоз. Заказывайте любое количество серы высокого качества, цена вас приятно удивит.

    Сера в медицине, химической, резиновой и других отраслях промышленности

    Сера (серы) — химический элемент VI группы периодической системы Менделеева, сказывается общепринятым знаком S. Атомный номер — 16 атомный вес — 32,065. Желтый (иногда с серым или зеленым оттенком) кристаллический типичный неметалл, что существует в природе как в чистом виде, так и в различных соединениях.

    Сера является побочным продуктом газодобывающей отрасли (при переработке она превращается в комки). Чтобы получить молотый серу, необходимо размолоть эти комки в микронизатора.

    Где применяется сера?

    Активная помощь организму в борьбе с опасными бактериями, поддержание необходимого уровня свертываемости крови, содействие усвоению полезных веществ, создание барьера для токсинов, радиации и других опасных воздействий. Благодаря этим и многим другим примечательным свойствами, сера и ее соединения получили очень широкое применение.

    Сера в химической промышленности

    Химическая промышленность — одна из основных сфер использования серы. Главное направление — производство серной кислоты, а также других кислот: фосфорной, соляной, плавиковой, борноитощо. Также из нее для различных целей изготавливаются синтетические волокна, красители, порох, сероуглерод и другие продукты.

    Серная кислота необходима для функционирования свинцовых аккумуляторов, где она выступает электролитом. В концентрированном виде ней от ненужных органических соединений очищают нефтепродукты. В разбавленном — проволока и письма от окалины перед лужением и оцинковкой. Используется серная кислота и для травления металлических изделий, если предполагается покрытие последних медью, хромом, никелем и др.

    На производство серной кислоты идет примерно половина всей серы, добываемой в мире.

    Сера в медицине и фармацевтике

    Важные серосодержащие вещества и в плане воздействия на человека. При лечении многих болезней используют препараты, содержащие серу. Они повышают жизненный тонус, иммунитет, убирают даже хроническую усталость, очищают организм от шлаков и токсинов, создают препятствие для инфекций и простуд. Мелкодисперсная сера входит в состав мазей, которые лечат кожные грибковые заболевания (чесотка, себорея, псориаз …). При недостатке серы плохо сворачивается кровь, возникают запоры, проблемы с сердечно-сосудистой системой и суставами. Если необходимо лечить ангину, стоматит, уретрит, энтеробиоз, заживлять гнойные раны, ожоги, экземы, без серы не обойтись!

    Сера в резиновой отрасли

    В резиновой промышленности с помощью серы каучук превращают в резину при смешивании и нагревании ее до определенной температуры. Только сера позволяет приобрести таких ценных свойств, как гибкость и эластичность.

    Этот процесс производства резины называется вулканизацией, которая может быть холодной и горячей. От количества применяемой серы зависят свойства вулканизованных материалов. К примеру:

    — Каучук + 0,5-5% серы = мягкая резина для автопокрышек, камер, мячиков, трубок и тому подобное;

    — Каучук + 30-50% серы = жесткий неэластичен эбонит.

    Сера в пищевой промышленности

    Сера входит в состав продуктов как растительного, так и животного происхождения. Ее недостаток можно восполнить, употребляя овощи и соки, фреши.

    Также в пищевой отрасли широко используется диоксид серы — всем известный консервант, количество которого должно соответствовать стандартам. Диоксид серы применяют:

    — В мясоперерабатывающей отрасли для создания препятствия бактериям;

    — При заготовке фруктов и овощей в качестве промежуточного консерванта;

    — При изготовлении сухофруктов для увеличения срока хранения и улучшения товарного вида;

    — В изготовлении пива, слабоалкогольных напитков, соков, чтобы продлить срок годности;

    — В производстве вин, чтобы избежать окисления и выполнить стабилизацию микрофлоры.

    Хотите купить серу для использования на вашем предприятии? Интересуют большие объемы поставок?

    Тогда у нас есть что вам предложить!

    Сера как кормовая добавка: применение серы в животноводстве

    Сера молотая кормовая (в порошковом виде) — неотъемлемая часть полноценного рациона в животноводстве, особая незаменимая лечебная субстанция.

    Правильное питание обеспечивает правильное, влияет на общее состояние организма, становится на пути болезней, среди которых и такие, которые приводят к летальному исходу.

    Обязательной составляющей понятия «правильное питание» является кормовые добавки, в том числе и сера.

    Сера, которая используется в животноводстве, входит в состав органических соединений, активизируют выработку энергии, синтез коллагена, свертывания крови. Она незаменима в процессе производства основного белка, который, в свою очередь, необходим для развития костной ткани. Благодаря ей, организм производит ферменты, ускоряющие разнообразные химические реакции, очень важны для своего функционирования.

    В теле животного этот элемент находится в связанной форме, в большинстве случаев в аминокислотах (цистин, цистеин, таурин), входящих в белки тканей и шерсти. Достаточное количество серы, например, в шерсти составляет 4%. О таком покров можно сказать, что он действительно богат цистином.

    Сера входит в состав инсулина (гормон поджелудочной железы), метеонину, витамина В1, антиневралгийного В-тиамина. Так, обогащенные ими корма невероятно влияют на кожные и волосяные (шерстяные) покровы. Улучшается оперение, активизируется формирование рогов и копыт, повышаются объемы надоев (до 10-15%), жирность молока и качественные характеристики яиц.

    Сера выступает зв`язувальним элементом для тяжелых металлов. Она нейтрализует вредные токсины, которые негативно влияют на печень и почки.

    Диоксид серы SO2 применяется в качестве пищевого консерванта, призванного защитить корма для животных от бактерий, предупредить окисления. Также его используют при производстве пищевых красителей / усилителей вкуса.

    Если сера молотая поступает в организм животного в достаточном количестве, многие системы работают, как положено. Если же наблюдается ее нехватка, необходимо пересмотреть рацион питания, добавить немного сульфатов натрия / аммония или элементарную cиpку.

    Примечательно: кормовая сера молотая — малотоксична для теплокровных животных соединение. Тератогенным и мутагенным, сенсибилизирующее и эмбриотоксическое действия не наблюдаются.

    Купить серу молотую можно на сайте компании. Осуществляем продажу серы оптом, возможен заказ любых крупных партий с доставкой по всей Украине.

    Сера молотая, гранулированная, комовая — все товарные типы серы реализуются по доступным ценам и поставляются заказчикам в оговоренные сроки. Заказывайте кормовую добавку по контактному телефону.

    6. Интенсификация процесса Клауса путем обогащения воздуха кислородом.

    Использование кислорода или обогащенного кислородом воздуха в процессе Клауса приводит к повышению температуры сжигания газа в термическом реакторе и к уменьшению объема продуктов сгорания. Это обуславливает области применения кислорода в этом процессе: 1) для интенсификации сжигания «слабого» кислого газа, т.е. газа с низким содержанием сероводорода и 2) для снижения удельных капитальных затрат при проектировании новой установки или повышении производительности существующей. Применение кислорода имеет ряд особенностей, которые необходимо учитывать при проектировании установки. Экономическую целесообразность использования кислорода необходимо рассчитывать для каждого случая индивидуально, исходя из условий конкретного завода.

    7. Процессы очистки хвостовых газов производства серы, основанные на адсорбционно - каталитическом продолжении реакции Клауса.

    Суть этой группы процессов заключается в продолжении реакции Клауса на катализаторе при пониженной температуре с одновременной конденсацией паров образованной серы. Поскольку сера адсорбируется катализатором, к нему предъявляются особые требования по сравнению с обычным катализатором процесса Клауса. Процесс является периодическим - после адсорбции определенного количества серы катализатор подвергают регенерации, путем отдувки серы горячим газом. Для непрерывной работы процесса устанавливается 2 или 3 каталитических реактора, которые работают в едином цикле: один - в фазе регенерации, другой (другие) - в фазе адсорбции. Общая степень конверсии сероводорода в серу при использовании данной технологии в значительной степени зависит от точности ведения процесса. Теоретическая степень конверсии составляет 99,6 - 99,7%, на практике этот показатель не превышает 99,5%.

    8. Процессы очистки хвостовых газов производства серы, основанные на гидрировании сернистых соединений до сероводорода.

    Суть этой группы процессов заключается в обработке отходящего газа процесса Клауса на специальном катализаторе в восстановительной атмосфере. При этом все соединения серы (SO 2 , COS, CS 2 , сера - парообразная и капельная) восстанавливаются до сероводорода. Далее, из технологического газа удаляется избыточная вода, и после этого в аминовом абсорбере происходит селективное поглощение сероводорода. При регенерации аминового раствора сероводород выделяется и направляется на сжигание в термический реактор процесса Клауса. Степень утилизации сероводорода по данной технологии может достигать 99,9% и выше. При проведении регенерации аминового раствора централизовано в рамках общезаводского хозяйства НПЗ экономические показатели процесса значительно улучшаются.

    9. Процессы очистки хвостовых газов производства серы, основанные на окислении сернистых соединений до диоксида серы.

    Суть этой группы процессов заключается в окислении всех газообразных соединений серы (H 2 S, COS, CS 2 , сера - парообразная и капельная) до диоксида серы. Далее диоксид серы в присутствии специального катализатора окисляется до серного ангидрида, который при взаимодействии с водой образует разбавленную серную кислоту. Кислота может иметь внутреннего потребителя в структуре НПЗ или может быть направлена на сжигание в топку термического реактора процесса Клауса. Степень утилизации сероводорода по данной технологии может достигать 99,9% и выше.

    Значительную часть мировой добычи серы поглощает бумажная промышленность (для получения сульфитцеллюлозы). Для того чтобы произвести одну тонну целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность — для вулканизации каучуков.

    В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями (для борьбы с болезнями растений, главным образом винограда и хлопчатника). Наряду с фосфором, калием и другими элементами сера необходима растениям.

    Однако основной потребитель серы — химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить одну тонну H 2 SО 4 , нужно сжечь около 300 кг серы.

    Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ (черного пороха) и спичек. Чистая» освобожденная от примесей сера нужна для производства красителей и светящихся составов.

    Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку металла, содержится иногда до 18% серы.

    C текущей ситуацией и прогнозом развития рынка серы можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков « Рынок серы в России ».

    Многие люди стремятся создать свой бизнес на строительной отрасли, которая уже несколько лет подряд относится к наиболее прибыльной. Да, на самом деле это так. Но при этом важно учесть и найти свою, более низко конкурентную ячейку. Конечно, на второй план выходит добыча ископаемых. Но, здесь работать и начать бизнес очень сложно. Да и высокая конкуренция может быстро свести бизнес к нулю. Другое дело - переработка сырья. Такая отрасль мене затратная, не требует больших вложений, да и найти место сбыта всегда можно.

    Ярким примером тому является производство серы. Перспективное направление на грани добывающей и химической промышленности. Хоть на фоне производства золота или железа, алюминия, такая деятельность выглядит более бедно, прибыль будет существенная. Она широко применяется в многих химических продуктах (серная кислота, сероуглерод, диоксид серы), также без нее невозможно производство взрывчатых веществ, удобрений, спичек, бумаги и так далее. Бизнес по производству серы очень прост: небольшие вложения, однокомпонентное сырье и несложное техническое производство, простой рынок сбыта. В любом случае спрос на данный продукт остается стабильным.

    Помещение.

    Для изготовления серы необходимо просторное помещение, от 600 метров квадратным. Важным условием успешного бизнеса является работа в три смены, 24 часа в сутки. Это должно быть закрытое помещение с хорошо продуманной пожарной безопасностью. Высота потолков в помещении должна достигать 4 метров. Важно зонально разделить помещение на производственную зону, секцию со складом готовой продукции и вспомогательными помещениями, стоянка автопогрузчиков, секция грануляции серы, склады, разгрузочно-погрузочная зона.

    Арендуя и реставрируя выбранное для производства помещения важно учесть все нормы безопасности труда, охраны окружающей среды. Хранение серы должно осуществляться лишь в специально предусмотренных для этого помещениях. Важно производить очистку воздуха, уборка должна быть осуществлена не реже одного раза в две недели. Общая стоимость аренды такого просторного помещения будет зависеть от выбранной местности и характеристик самого помещения, необходимости дополнительного вложения.

    При этом стоит рассчитывать на сумму не менее 1,4 тыс. $.

    Оборудование.

    При получении серы из кислых газов необходимо купить такое оборудование:

    1. Молотовая дробилка - 2 тыс. $;
    2. Топка с кипящим слоем - 2,3 тыс. $;
    3. Бойлер - 400 $;
    4. Камера горения - 1,2 тыс. $;
    5. Конденсатор - 3 тыс. $;
    6. Паровая установка - 1,5 тыс. $;
    7. Печь-реактор - 900 $;
    8. Конвектор - 500 $;
    9. Воздушный ящик - 300 $;
    10. Погрузочное оборудование - 3 тыс. $.

    Минимальное количество средств, необходимое для закупки производственной линии будет составлять 13 тыс. $.

    Можно выбрать установку как от китайских, так и от европейских производителей. Выбор необходимо делать, ориентируясь на процентный выход серы. Качественные технологии позволяют получать более 97 % серы.

    Сырье.

    Производство серы осуществляется из нефтезаводских и сероводородсодержащих газов. Самым популярным считается метод Клауса, который, при использовании качественного оборудования позволяет получить не менее 94 % серы на выходе. Основной объем остальной части составляет углекислый газ, и есть малое количество серооксида углерода и углеводородов (метан, этан). При этом сера будет выступать побочным продуктом в данной реакции. Но именно ее необходимо сохранить. В первую очередь из смеси кислых газов получают сероводород, позже методом переработки выделяют элементарную серу. При этом существует возможность получения серной лепешки или жидкой серы для различных нужд.

    На закупку сырья необходимо подготовить около 5 тыс. $

    Персонал.

    На предприятии с площадью 600 метров квадратных, при условиях работы в три смены, 24 часа в сутки необходим персонал в количестве 19 человек:

    1. Монтер - 1 человек;
    2. Ремонтник машин - 1 человек;
    3. Система дробления - 2 человека;
    4. Водитель погрузочного оборудования - 1 человек;
    5. Система истирания - 3 человека;
    6. Система обжига - 6 человек;
    7. Система теплоснабжения - 6 человек.

    Персонал важно нанимать с специальным образованием. Людей на предприятии обеспечивают сменной обувью и одеждой, проводится частый инструктаж.

    Маркетинг.

    Даже в этой отрасли необходим маркетинг, вот только делать его необходимо правильно. Возможны рекламные публикации, но только использование исключительно специализированной литературы. Помогут развитию участие в выставках и семинарах. Важной будет реклама в интернете, создать хотя б сайт страничку будет уместно. Также помогут проведенные личные встречи переговоры с потенциальными покупателями вашего сырья.

    Стартовые траты.

    К первоначальным тратам на заре развития бизнеса будут относить:

    1. Аренда помещения - 1,4 тыс. $;
    2. Закупка оборудования - 13 тыс. $;
    3. Закупка сырья - 5 тыс. $;
    4. Персонал - 8 тыс. $;
    5. Маркетинг - 700 $.

    Стартовым капиталом для развития бизнеса по производству серы будет являться сумма в 38 тыс. $.

    Прибыль и окупаемость.

    Производительность оборудования позволяет изготавливать около 40 тыс. тонн в год. Окупаемость при правильном направлении сбыта осуществиться уже через 18 месяцев. Оптовая цена одной тонны составит 14 тыс. $. Выгоднее изготавливать серу в жидком состоянии, поскольку именно в таком виде она пользуется большей популярностью.

    Клиенты и развитие.

    Клиентами в данной отрасли является промышленность, где при производстве различных изделий необходима чистая серы (описано выше). В качестве перспектив к развитию можно отнести открытие комплексного химического комбината, который будет заниматься изготовлением серных реактивов, спичек или инсектицидов.


    Раздел 1. Определение серы.

    Раздел 2. Природные минералы серы .

    Раздел 3. История открытия серы .

    Раздел 4. Происхождение названия сера.

    Раздел 5. Происхождение серы.

    Раздел 6. Получение серы.

    Раздел 7. Производители серы.

    Раздел 8. Свойства серы.

    - Подраздел 1. Физические свойства.

    - Подраздел 2. Химические свойства.

    Раздел 10. Пожароопасные свойства серы.

    - Подраздел 1. Пожары на складах серы.

    Раздел 11. Нахождение в природе.

    Раздел 12. Биологическая роль серы.

    Раздел 13. Применение серы.

    Определение серы

    сера — это элемент шестой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. Sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

    Сера - S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс». Природная сера состоит из четырех стабильных нуклидов: 32S (содержание 95,084% по массе), 33S (0,74 %), 34S (4,16%) и 36S (0,016 %). Радиус атома серы 0,104 нм. Радиусы ионов: иона S2- 0,170 нм (координационное число 6), иона S4+ 0,051 нм (координационное число 6) и иона S6+ 0,026 нм (координационное число 4). Энергии последовательной ионизации нейтрального атома серы от S0 до S6+ равны, соответственно, 10,36, 23,35, 34,8, 47,3, 72,5 и 88,0 эВ. Сера расположена в VIA группе периодической системы Д. И. Менделеева, в 3-м периоде, и принадлежит к числу халькогенов. Конфигурация внешнего электронного слоя 3s23p4. Наиболее характерны степени окисления в соединениях -2, +4, +6 (валентности соответственно II, IV и VI). Значение электроотрицательности серы по Полингу 2,6. Сера относится к числу неметаллов.

    В свободном виде сера представляет собой желтые хрупкие кристаллы или желтый порошок.

    Сера (Sulfur) - это

    Природные минералы серы

    Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

    Важнейшие природные соединения серы: FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в черного золота, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

    Сера (Sulfur) - это

    История открытия серы

    сера в самородном состоянии, а также в виде сернистых соединений известна с древнейших времён. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, ещё в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников. Около VIII в. китайцы стали использовать её в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла ), объясняют то, что её считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, ещё в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов , согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трёх принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения её из пиритов; последний был распространён в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом, точно происхождение серы не установлено, но, как сказано выше, этот элемент использовался до Рождества Христова, а значит знаком людям с давних времён.

    Сера встречается в природе в свободном (самородном) состоянии, поэтому она была известна человеку уже в глубокой древности. Сера привлекала внимание характерной окраской, голубым цветом пламени и специфическим запахом, возникающим при горении (запах сернистого газа). Считалось, что горящая сера отгоняет нечистую силу. В Библии говорится об использовании серы для очищения грешников. У человека средневековья запах «серы» ассоциировался с преисподней. Применение горящей серы для дезинфекции упоминается Гомером. В Древнем Риме с помощью сернистого газа отбеливали ткани.

    Издавна использовалась сера в медицине — ее пламенем окуривали больных, ее включали в состав различных мазей для лечения кожных заболеваний. В 11 в. Авиценна (Ибн Сина), а затем и европейские алхимики полагали, что металлы, в том числе и серебро, состоят из находящихся в различных соотношениях серы и ртути. Поэтому сера играла важную роль в попытках алхимиков найти «философский камень» и превратить недрагоценные металлы в драгоценные. В 16 в. Парацельс считал серу наряду с ртутью и «солью» одним из основных «начал» природы, «душою» всех тел.

    Практическое значение серы резко возросло после того, как изобрели черный порох (в состав которого обязательно входит сера). Византийцы в 673 г., защищая Константинополь, сожгли флот неприятеля с помощью так называемого греческого огня - смеси селитры, серы, смолы и других веществ — пламя которого не гасилось водой. В средние века в Европе применялся черный порох, по составу близкий к смеси греческого огня. С тех пор началось широкое использование серы для военных целей.


    Издавна было известно и важнейшее соединение серы — серная кислота. Один из создателей ятрохимии, монах Василий Валентин, в 15 веке подробно описал получение серной кислоты путем прокаливания железного купороса (старинное название серной кислоты — купоросное масло).


    Элементарную природу серы установил в 1789 А. Лавуазье. В названиях химических соединений, содержащих серу, часто содержится приставка «тио» (например, применяемый в фотографии реактив Na2S2O3 имеет название тиосульфат натрия). Происхождение этой приставки связано с греческим названием серы — theion.

    Происхождение названия сера

    Русское название серы восходит к праславянскому *sěra, которое связывают с лат. sērum «сыворотка».

    Латинское sulphur (эллинизированное написание более старого sulpur) восходит к индоевропейскому корню *swelp- «гореть».

    Происхождение серы

    Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.

    Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

    Теория сингенеза (то есть одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворённые в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путём или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

    Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространённый из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями черного золота или Природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

    В последние десятилетия находит всё новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-H2O и ангидрита CaSO4 в серу и кальцит СаСО3. Эта теория создана в 1935 году советскими учёными Л. М. Миропольским и Б. П. Кротовым. В её пользу говорит, в частности, такой факт.

    В 1961 году в Ираке было открыто Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

    Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.


    Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озёра (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.


    Всё это означает, что разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах . Ещё из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот распространяется и на геохимию.

    Получение серы

    серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землёй. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности её самовозгорания.

    Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

    В 1890 г. Герман Фраш, предложил плавить серу под землёй и через скважины, подобные нефтяным, выкачивать её на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

    Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

    Также сера в больших количествах содержится в Природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

    Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 - 4227 тыс. тонн и категории C2 - 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

    Производители серы

    Основными производителями серы в Российской Федерации являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие её как побочный при очистке газа.

    Свойства серы

    1) Физические

    сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде, скипидаре. Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °С; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °С полимерные звенья начинают рушиться. Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

    Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.

    2) Химические

    Горение серы

    На воздухе сера горит, образуя сернистый ангидрид — бесцветный газ с резким запахом:

    С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.


    Помимо кислорода, сера реагирует со многими неметаллами, однако при комнатной температуре сера - только со фтором, проявляя восстановительные свойства:

    Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов:

    2S + Cl2 = S2Cl2

    При нагревании сера также реагирует с фосфором, образуя, видимо, смесь сульфидов фосфора, среди которых — высший сульфид P2S5:

    Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

    S + H2 = H2S (сероводород)

    C + 2S = CS2 (сероуглерод)

    При нагревании сера взаимодействует со многими металлами, часто — весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

    2Al + 3S = Al2S3

    Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

    Na2S + S = Na2S2

    Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

    3S + 6KOH = K2SO3 + 2K2S + 3H2O

    Полученный плав называется серной печенью.


    С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:

    S + 6HNO3(конц.) = H2SO4 + 6NO2 + 2H2O

    S + 2H2SO4(конц.) = 3SO2 + 2H2O

    Сера (Sulfur) - это

    Сера (Sulfur) - это

    Пожароопасные свойства серы

    Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углём, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.

    Средства тушения: распылённая вода, воздушно-механическая пена.

    По данным В. Маршалла пыль серы относится к разряду взрывоопасных, но для взрыва необходима достаточно высокая концентрация пыли — порядка 20 г/м3 (20000мг/м3), такая концентрация во много раз превышает предельно допустимую концентрацию для человека в воздухе рабочей зоны — 6 мг/м3.

    Пары образуют с воздухом взрывчатую смесь.

    Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C.

    Так как воздух по объёму состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объёма кислорода получается один объём SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха, и объёмное содержание SO2 в газовой смеси меньше теоретически возможного, составляя обычно 14…15 %.

    Обнаружение горения серы пожарной автоматикой является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Горение происходит при низкой температуре. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространёнными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.

    Для выполнения требований пожарной безопасности на складах серы необходимо:

    Конструкции и технологическое оборудование должны регулярно очищаться от пыли;

    Помещение склада должно постоянно проветриваться естественной вентиляцией при открытых дверях;

    Дробление комков серы на решётке бункера должно производиться деревянными кувалдами или инструментом из неискрящего материала;

    Конвейеры для подачи серы в производственные помещения должны быть снабжены металлоискателями;

    В местах хранения и применения серы необходимо предусматривать устройства (бортики, пороги с пандусом и т. п.), обеспечивающие в аварийной ситуации предотвращение растекания расплава серы за пределы помещения или открытой площадки;

    На складе серы запрещается:

    Производство всех видов работ с применением открытого огня;

    Складировать и хранить промасленную ветошь и тряпки;

    При ремонте применять инструмент из искродающего материала.

    Пожары на складах серы

    В декабре 1995 года на открытом складе серы предприятия , расположенного в городе Сомерсет Вест Западной Капской провинции Южно-Африканской Республики произошёл крупный пожар, погибли два человека.

    16 января 2006 г. около пяти вечера на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250-ти квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.

    15 марта 2007 рано утром на ООО «Балаковский завод волоконных материалов» произошёл пожар на закрытом складе серы. Площадь пожара составила 20 кв.м. На пожаре работало 4 пожарных расчёта с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.

    4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.

    В апреле 2008 недалеко от посёлка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчётов и спасатели. В тот момент, когда пожарные оказались около склада, горела ещё не вся сера, а только её небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землёй и залиты водой.

    В июле 2009 в Днепродзержинске горела сера. Пожар произошёл на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.

    Нахождение в природе серы

    С ера довольно широко распространена в природе. В земной коре ее содержание оценивается в 0,05% по массе. В природе часто встречаются значительные залежи самородной серы (обычно вблизи вулканов); в Европе они расположены на юге Италии, в Сицилии. Еще большие залежи самородной серы имеются в США (в штатах Луизиана и Техас), а также в Средней Азии, в Японии, в Мексике. В природе сера встречается как россыпями, так и в виде кристаллических пластов, иногда образуя изумительные по красоте группы полупрозрачных желтых кристаллов (так называемые друзы).

    В вулканических местностях часто наблюдается выделение из-под земли газа сероводорода H2S; в этих же регионах сероводород встречается в растворенном виде в серных водах. Вулканические газы часто содержат также сернистый газ SO2.

    На поверхности нашей планеты широко распространены месторождения различных сульфидных соединений. Наиболее часто среди них встречаются: железный колчедан (пирит) FeS2, медный колчедан (халькопирит) CuFeS2, свинцовый блеск PbS, киноварь HgS, сфалерит ZnS и его кристалическая модификация вюртцит, антимонит Sb2S3 и другие. Известны также многочисленные месторождения различных сульфатов, например, сульфата кальция (гипс CaSO4·2H2O и ангидрит CaSO4), сульфата магния MgSO4 (горькая соль), сульфата бария BaSO4 (барит), сульфата стронция SrSO4 (целестин), сульфата натрия Na2SO4·10H2O (мирабилит) и др.

    Каменные угли содержат в среднем 1,0-1,5% серы. Сера может входить и в состав черного золота . Целый ряд месторождений природного горючего газа (например, Астраханское) содержат как примесь сероводород.


    Сера относится к элементам, которые необходимы для живых организмов, так как она является существенной составной частью белков. Белки содержат 0,8-2,4% (по массе) химически связанной серы. Растения получают серу из сульфатов, содержащихся в почве. Неприятные запахи, возникающие при гниении трупов животных, объясняются главным образом выделением соединений серы (сероводорода: и меркаптанов), образующихся при разложении белков. В морской воде присутствует около 8,7·10-2 % серы.

    Получение серы

    С еру получают, в основном, выплавляя ее из горных пород, содержащих самородную (элементарную) серу. Так называемый геотехнологический способ позволяет получать серу без подъема руды на поверхность. Этот способ был предложен в конце 19 века американским химиком Г. Фрашем, перед которым встала задача извлечения на поверхность земли серы из месторождений юга США , где песчаный грунт резко усложнял ее добычу традиционным шахтным методом.

    Фраш предложил использовать для подъема серы на поверхность перегретый водяной пар. Перегретый пар по трубе подают в подземный слой, содержащий серу. Сера плавится (ее температура плавления немного ниже 120°С) и по трубе, расположенной внутри той, по которой под землю закачивают водяной пар, поднимается наверх. Для того чтобы обеспечить подъем жидкой серы, через самую тонкую внутреннюю трубу нагнетают сжатый воздух.

    По другому (термическому) методу, получившему особое распространение в начале 20 века на Сицилии, серу выплавляют, или возгоняют, из дробленной горной породы в специальных глиняных печах.

    Существуют и другие методы выделения самородной серы из породы, например, экстракцией сероуглеродом или флотационными методами.

    В связи с тем, что потребность промышленности в сере очень велика, разработаны методы ее получения из сероводорода H2S и сульфатов.

    Метод окисления сероводорода до элементарной серы был впервые разработан в Великобритании, где значительные количества серы научились получать из остающегося после получении соды Na2CO3 по методу французского химика Н. Леблана сульфида кальция CaS. Метод Леблана основан на восстановлении сульфата натрия углем в присутствии известняка CaCO3.

    Na2SO4 + 2C = Na2S + 2CO2;

    Na2S + CaCO3 = Na2CO3 + CaS.

    Соду затем выщелачивают водой, а водную суспензию плохо растворимого сульфида кальция обрабатывают диоксидом углерода:

    CaS + CO2 + H2O = CaCO3 + H2S

    Образующийся сероводород H2S в смеси с воздухом пропускают в печи над слоем катализатора. При этом за счет неполного окисления сероводорода образуется сера:

    2H2S + O2 = 2H2O +2S

    Аналогичный метод используют для получения элементарной серы и из сероводорода, сопутствующего природным газам.

    Так как современная техника нуждается в сере высокой чистоты, разработаны эффективные методы рафинирования серы. При этом используют, в частности, различия в химическом поведении серы и примесей. Так, мышьяк и селен удаляют, обработав серу смесью азотной и серной кислот.

    Использованием методов, основанных на дистилляции и ректификации, удается получить высокочистую серу с содержанием примесей 10-5 - 10-6 % по массе.

    Применение серы

    О коло половины производимой серы используется на производство серной кислоты, около 25% расходуется для получения сульфитов, 10-15% — для борьбы с вредителями сельскохозяйственных культур (главным образом винограда и хлопчатника) (наибольшее значение здесь имеет раствор медного купороса CuSO4·5H2O), около 10% используется резиновой промышленностью для вулканизации резины. Серу применяют при производстве красителей и пигментов, взрывчатых веществ (она до сих пор входит в состав пороха), искусственных волокон, люминофоров. Серу используют при производстве спичек, так как она входит в состав, из которого изготовляют головки спичек. Серу до сих пор содержат некоторые мази, которыми лечат заболевания кожи. Для придания сталям особых свойств в них вводят небольшие добавки серы (хотя, как правило, примесь серы в сталях нежелательна).

    Биологическая роль серы

    С ера постоянно присутствует во всех живых организмах, являясь важным биогенным элементом. Ее содержание в растениях составляет 0,3-1,2 %, в животных 0,5-2 % (морские организмы содержат больше серы, чем наземные). Биологическое значение серы определяется прежде всего тем, что она входит в состав аминокислот метионина и цистеина и, следовательно, в состав пептидов и белков. Дисульфидные связи -S-S- в полипетидных цепях участвуют в формировании пространственной структуры белков, а сульфгидрильные группы (-SH) играют важную роль в активных центрах ферментов. Кроме того, сера входит в молекулы гормонов, важных веществ. Много серы содержится в кератине волос, костях, нервной ткани. Неорганические соединения серы необходимы для минерального питания растений. Они служат субстратами окислительных реакций, осуществляемых распространенными в природе серобактериями.

    В организме среднего человека (масса тела 70 кг) содержится около 1402 г серы. Суточная потребность взрослого человека в сере — около 4.

    Однако по своему отрицательному воздействию на окружающую среду и человека сера (точнее, ее соединения) стоит на одном из первых мест. Основной источник загрязнения серой — сжигание каменного угля и других видов топлива, содержащих серу. При этом около 96% серы, содержащейся в топливе, попадает в атмосферу в виде сернистого газа SO2.

    В атмосфере сернистый газ постепенно окисляется до оксида серы (VI). Оба оксида — и оксид серы (IV), и оксид серы (VI) — взаимодействуют с парами воды с образованием кислотного раствора. Затем эти растворы выпадают в виде кислотных дождей. Оказавшись в почве, кислотные воды угнетают развитие почвенной фауны и растений. В результате создаются неблагоприятные условия для развития растительности, особенно в северных регионах, где к суровому климату добавляется химическое загрязнение. В результате гибнут леса, нарушается травяной покров, ухудшается состояние водоемов. Кислотные дожди разрушают изготовленные из мрамора и других материалов памятники, более того, они вызывают разрушение даже каменных зданий и предметов торговли из металлов. Поэтому приходится принимать разнообразные меры по предотвращению попадания соединений серы из топлива в атмосферу. Для этого подвергают очистке от соединений серы и нефтепродукты, очищают образующиеся при сжигании топлива газы.


    Сама по себе сера в виде пыли раздражает слизистые оболочки, органы дыхания и может вызывать серьезные заболевания. ПДК серы в воздухе 0,07 мг/м3.

    Многие соединения серы токсичны. Особенно следует отметить сероводород, вдыхание которого быстро вызывает притупление реакции на его неприятный запах и может привести к тяжелым отравлениям даже с летальным исходом. ПДК сероводорода в воздухе рабочих помещений 10 мг/м3, в атмосферном воздухе 0,008 мг/м3.

    Источники

    Химическая энциклопедия: в 5 т. / Редкол.:Зефиров Н. С. (гл. ред.). — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 319. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8

    Большая медицинская энциклопедия

    СЕРА - хим. элемент, символ S (лат. Sulfur), ат. н. 16, ат. м. 32,06. Существует в виде нескольких аллотропных модификаций; среди них сера моноклинной модификации (плотность 1960 кг/м3, tпл = 119°С) и ромбическая сера (плотность 2070 кг/м3, ίπι = 112,8… … Большая политехническая энциклопедия

    СЕРА - (обозначается S), химический элемент VI группы ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ, неметалл, известный с древности. Встречается в природе как в виде отдельного элемента, так и в виде сульфидных минералов, таких как ГАЛЕНИТ и ПИРИТ, и сульфатных минералов,… … Научно-технический энциклопедический словарь

    сера - В мифологии ирландских кельтов Сера отец Парталона (см. глава 6). Согласно некоторым источникам, именно Сера, а не Парталон был мужем Дилгнейд. (

    Описание и свойства серы

    Сера представляет собой вещество, которое находится в в 16 группе, под третьим периодом и имеет атомный номер – 16. Она может встретиться как в самородном, также и в связанном виде. Обозначается сера литерой S. Известна формула серы – (Ne)3s 2 3p 4 . Сера как элемент входит в состав многих белков.

    На фото кристаллы серы

    Если говорить о строении атома элемента серы , то на внешней его орбите есть электроны, валентное число которых достигает шести.

    Это объясняет свойство элемента быть максимально шестивалентным в большинстве объединений. В структуре природного химического элемента есть четыре изотопа, и это – 32S, 33S, 34S и 36S. Говоря о внешней электронной оболочке, атом имеет схему 3s2 3р4. Радиус атома – 0,104 нанометра.

    Свойства серы в первую очередь делятся на физического типа. К нему относится то, что элемент имеет твердый кристаллический состав. Два аллотропических видоизменения – основное состояние, в котором устойчив этот элемент серы.

    Первое видоизменение ромбическое, имеющее лимонно-желтую окраску. Его устойчивость ниже, чем 95,6 °С. Второй – моноклинный, имеющий медово-желтую окраску. Его устойчивость колеблется от 95,6 °С и 119,3 °С.

    На фото минерал сера

    Во время плавки химический элемент стает движущейся жидкостью, имеющей желтый цвет. Она буреет, достигая температуры более 160 °С. А при 190 °С цвет серы превращается в темно-коричневый. После достижения отметки 190 °С наблюдается уменьшение вязкости вещества, которое все же после нагревания 300 °С стает жидкотекучим.

    Другие свойства серы:

      Практически не проводит тепла и электричества.

      Не растворяется при погружении в воду.

      Растворима в аммиаке, имеющем безводную структуру.

      Также растворима в сероуглероде и других растворителях, имеющих органическую природу.

    К характеристике элемента серы важно добавить и ее химические особенности. Она является активной в этом отношении. Если серу нагреть, то она может просто объединяться практически с любым химическим элементом.

    На фото образец серы, добытый в Узбекистане

    За исключением инертных газов. При контакте с металлами, хим. элемент образовывает сульфиды. Комнатная температура способствует тому, что элемент может вступить в реакцию с . Увеличенная температура способствует увеличению активности серы.

    Рассмотрим, как поведение серы с отдельными веществами:

      С металлами – является окислителем. Образовывает сульфиды.

      С водородом – при высоких температурах – до 200 °С происходит активное взаимодействие.

      С кислородом. Образовывается объединения оксидов при температурах до 280 °С.

      С фосфором, углеродом – является окислителем. Только при отсутствии воздуха во время реакции.

      С фтором – проявляет себя как восстановитель.

      С веществами, имеющими сложную структуру – также как восстановитель.

    Месторождения и добыча серы

    Основной источник для получения серы – ее месторождения. В целом во всем мире насчитывается 1,4 млрд т запасов этого вещества. Ее добывают как при открытом и подземном способе выработки, так и с помощью выплавки из-под земли.

    На фото добыча серы в вулкане Кава Иджен

    Если применим последний случай, то используется вода, которую перегревают и расплавляют ею серу. В бедных рудах элемент содержится примерно в 12 %. Богатых – 25% и больше.

    Распространенные типы месторождений:

      Стратиформный – до 60%.

      Солянокупольный – до 35 %.

      Вулканогенный – до 5%.

    Первый тип связан с толщами, несущими название сульфатно-карбонатных. При этом рудные тела, которые имеют мощность до нескольких десятков метров и с размером до сотни метров находятся в сульфатных породах.

    Также эти пластовые залежи можно найти посреди пород сульфатного и карбонатного происхождения. Второй тип характеризуется залежами серого цвета, которые приурочиваются к соляным куполам.

    Последний тип связывают с вулканами, имеющими молодую и современную структуру. При этом рудный элемент имеет пластообразную, линзовидную форму. В нем сера может содержаться в размере 40 %. Этот тип месторождения распространен в Тихоокеанском вулканическом поясе.

    Месторождение серы в Евразии находится в Туркмении, в Поволжье и других местах. Породы серы находят возле левых берегов Волги, которые тянутся от Самары. Ширина полосы пород достигает нескольких километров. При этом их можно найти вплоть до Казани.

    На фото сера в горной породе

    В Техасе и Луизиане в кровлях соляных куполов находят огромное количество серы. Особо красивые Италийские этого элемента находят Романьи и Сицилии. А на острове Вулькано находят моноклинную серу. Элемент, который был окислен пиритом, нашли на Урале в Челябинской области.

    Для добычи серы хим элемента используют разные способы. Все зависит от условия его залегания. При этом, конечно же, особое внимание уделяют безопасности.

    Так как вместе с серной рудой скопляется сероводород, то необходимо особо серьезно подходить к любому способу добычи, ведь этот газ ядовитый для человека. Также и сера имеет свойство возгораться.

    Чаще всего пользуются открытым способом. Так с помощью экскаваторов снимаются значительные части пород. Затем с помощью взрывов дробится рудная часть. Глыбы отправляются на фабрику для обогащения. Затем – на завод по плавке серы, где и получают серу из концентрата.

    На фото сера в порту, привезенная морским транспортом

    В случае глубокого залегания серы во многих объемах, используют метод Фраша. Сера расплавляется, находясь еще под землей. Затем, как и нефть выкачивается наружу через пробитую скважину. Такой подход основывается на том, что элемент легко плавится и имеет небольшую плотность.

    Также известен способ разделения на центрифугах. Только этот способ имеет недостаток: сера получается с примесями. И тогда необходимо проводить ее дополнительную очистку.

    В некоторых случаях используют скважный метод. Другие возможности добычи серного элемента:

      Пароводяной.

      Фильтрационный.

      Термический.

      Центрифугальный.

      Экстракционный.

    Применение серы

    Большая часть добытой серы уходит, чтоб изготовить серную кислоту. А роль этого вещества очень огромная в химическом производстве. Примечательно, что для получения 1 тонны серного вещества необходимо 300 кг серы.

    Бенгальские огни, которые ярко светятся и имеют много красителей, также производятся с помощью серы. Бумажная промышленность – это еще одна область, куда уходит значительная часть добытого вещества.

    На фото серная мазь

    Чаще всего применение сера находит при удовлетворении производственных нужд. Вот некоторые из них:

      Использование в химическом производстве.

      Для изготовления сульфитов, сульфатов.

      Изготовление веществ для удобрения растений.

      Чтоб получить цветные виды металлов.

      Для придачи стали дополнительных свойств.

      Для изготовления спичек, материалов для взрывов и пиротехники.

      Краски, волокна из искусственных материалов – изготовляются при помощи этого элемента.

      Для отбеливания ткани.

    В некоторых случаях элемент сера входит в мази, которые лечат кожные болезни.

    Цена серы

    По последним новостям необходимость в сере активно растет. Стоимость на российский продукт равняется 130 долларам. На канадский вариант – 145 долларов. А вот в Ближнем Востоке цены возросли до 8 долларов, что привело к стоимости в 149 долларов.

    На фото крупный экземпляр минерала сера

    В аптеках можно найти молоту в порошок серу по цене от 10 до 30 рублей. К тому же есть возможность купить ее оптом. Некоторые организации предлагают по невысокой цене приобрести гранулированную техническую газовую серу .