Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Ступень турбины регулирующая. Курсовая работа: Расчет противодавленческой турбины с двухвенечной регулирующей ступенью

    Ступень турбины регулирующая. Курсовая работа: Расчет противодавленческой турбины с двухвенечной регулирующей ступенью

    РАСЧЕТ ПРОТОЧНОЙ ЧАСТИ МНОГОСТУПЕНЧАТЫХ ТУРБИН

    Главные конструктивные особенности тур­бины, ее проточной части определяются сле­дующими факторами;

    1) параметрами пара перед турбиной и давлением за турбиной;

    2) мощностью турбины;

    3) частотой вращения ротора;

    4) наличием или отсутствием промежуточ­ного перегрева пара;

    5) наличием или отсутствием регулируе­мых отборов пара;

    6) опытом и традициями турбинных заво­дов, имеющимся в их распоряжении парком станков по изготовлению деталей и узлов турбины;

    7) требованиями эксплуатации: скоростью пуска и нагружения турбины, диапазоном из­менения нагрузки турбины и т. п.;

    8) унификацией узлов и деталей турбины;

    9) технологичностью конструктивных ре­шений и связанными с ней трудозатратами на изготовление турбины;

    10) ремонтопригодностью конструкции турбины, ее узлов и деталей.

    При конструировании турбины обычно являются затраты на выработку едини­цы электроэнергии.

    При конструировании и расчете проточной части турбины обычно бывают заданы следу­ющие величины:

    1) номинальная электрическая мощность турбогенератора N э ;

    2) начальные параметры пара р о и t о ;

    3) параметры пара после промежуточного пароперегревателя р пп и t пп (если имеется промежуточный перегрев пара);

    4) давление отработавшего пара р 2 (р к ),

    5) температура питательной воды на вы­ходе из системы регенерации t п.в ;

    6) частота вращения ротора турбины п .

    Номинальной мощностью турбины называ­ют ту наибольшую мощность, которая может развиваться на зажимах электрического гене­ратора в течение практически любого отрез­ка времени не только при номинальных пара­метрах пара, но и при их отклонениях от номинальных пара­метров, оговоренных в технических усло­виях на поставку турбины (при снижении начального давления, ухудшении вакуума и т. д.). Наряду с номинальной мощностью для паровых турбин используют также понятие максимальной мощности , которая превышает номинальную мощность при отклонениях па­раметров пара от номинальных значений (уг­лубление вакуума, повышение давления пе­ред турбиной в допустимых пределах и т. д.) и при отключении регенеративных подо­гревателей.

    В качестве начальных параметров пара р о и t о понимают давление и температуру па­ра перед стопорным клапаном турбины. Дав­ление пара непосредственно за котлом выше давления перед стопорным клапаном за счет гидравлических потерь в паропроводе от кот­ла до турбины; температура пара за котлом также выше температуры перед стопорным клапаном из-за потерь теплоты паропрово­дом.

    Параметры пара после промежуточного перегревателя р пп и t пп указывают обычно по состоянию перед отсечными клапанами ЧСД. Давление промежуточного перегрева р пп вы­бирают на основе экономических расчетов по минимуму затрат на выработку электрической энергии.


    Давлением отработавшего пара р 2 (р к ) на­зывают давление в выходном сечении вы­хлопного патрубка турбины. Для конденсаци­онных турбин расчетное давление за турби­ной р к зависит от среднегодовой температуры охлаждающей воды, определяется оно также на основе технико-экономических расчетов по минимуму затрат на выработку электриче­ской энергии.

    Расчетную температуру питательной воды t пп в выбирают по предварительной оценке экономичности всей станции. Если рассмат­ривать экономичность только паротурбинной установки, то целесообразной температурой питательной воды является температура на­сыщения при давлении на входе в котел. Од­нако в этом случае КПД котла снижается за счет повышения температуры уходящих га­зов. Температура t п.в в в зависимости от на­чального давления находится обычно в сле­дующих пределах: при р о =24,0 МПа t п.в =260-270 °С; при р о =13,0 МПа t п.в =230- 235°С; при р о =10,0 МПа t п.в =215-220°С.

    Частота вращения ротора турбины опре­деляется чаще всего частотой вращения при­водимой машины. Для электрического гене­ратора с двухполюсным ротором и при ча­стоте переменного тока 50 Гц частота враще­ния роторов турбины и генератора равна 50 с- 1 . Если мощность турбины мала (N э ≤4000 кВт), частоту вращения ротора тур­бины целесообразно выполнять повышенной, а между турбиной и генератором устанавли­вать понижающий частоту вращения редук­тор.

    Для турбиночень большой мощности(N э >>500-1000 МВт) для сокращения числа цилиндров низкого давления целесообразно использовать частоту вращения п =25 с- 1 при четырехполюсном роторе электрического генератора.

    Приступая к расчету турбины, выбирают расчетную мощность, т. е. мощность, соот­ветствующую наибольшей экономичности тур­бины N э эк . Для турбин, работающих в доста­точно широком диапазоне изменения нагруз­ки, в качестве расчетной принимают мощ­ность, равную 0,8-0,9 номинальной. Круп­ные турбины, которые предполагается экс­плуатировать при полной их загрузке в тече­ние продолжительного времени, обычно име­ют расчетную мощность, близкую к номи­нальной, N э эк = (0,9-1,0) N э н . Турбины для АЭС проектируются, как правило, при усло­вии N э эк =N э н .

    Далее выбирают тепловую схему паротур­бинной установки - число регенеративных по­догревателей, давление в деаэраторе, темпе­ратуру питательной воды на выходе из подо­гревателей, параметры пара приводной тур­бины питательного насоса, давление проме­жуточного перегрева, для турбин АЭС - дав­ление в промежуточном сепараторе и т. д. Для расчета тепловой схемы на основе ста­тистических данных по экономичности турбин предварительно оценивают протекание про­цесса в h,S -диаграмме.

    В результате расчета тепловой схемы оп­ределяют расходы пара во всех ступенях, а также расходы пара в регенеративные подо­греватели. Кроме того, вычисляют другие тепловые характеристики паротурбинной установки - удельный расход пара, удель­ный расход теплоты, η э.

    Конструкция ступеней турбины, размеры элементов проточной части в большой степе­ни зависят от объемного пропуска пара - произведения массового расхода пара на его удельный объем . От первых ступеней тур­бины к последним удельный объем пара значительно возрастает. Так, при параметрах пара р о =23,5 МПа и t о =540°С удельный объем υ в 2500 раз меньше удельного объема пара за последней ступенью турбины при р к =3,4 кПа. Поэтому объемный расход пара в первых ступенях существенно меньше, чем в последних ступенях турбины.

    В связи с особенностями проектирования проточной части все ступени конденсационной турбины разделяют на четыре группы:

    1) регулирующие ступени;

    2) ступени малых объемных пропусков па­ра (первые нерегулируемые ступени турбин небольшой мощности);

    3) промежуточные ступени с относитель­но большим объемным пропуском пара;

    4) последние ступени, работающие в части низкого давления турбины при очень боль­шом объемном пропуске пара.

    Регулирующая ступень - это первая сту­пень турбины при сопловом парораспределе­нии. При дроссельном парораспределении ре­гулирующая ступень в турбине отсутствует. Основной конструктивной особенностью регу­лирующей ступени является изменяющаяся степень парциальности при изменении расхо­да пара на турбину. В связи с этим сопла регулирующей ступени объеди­нены в группы. К каждой группе сопл пар подводится через самостоятельный регулиру­ющий клапан. При одном открытом клапане работает одна группа сопл и поэтому ступень работает при малой степени парциальности. По мере открытия следующих регулирующих клапанов степень парциальности растет. При всех открытых регулирующих клапанах сте­пень парциальности регулирующей ступени всегда меньше единицы. Регулирующая сту­пень конструктивно отделена емкой камерой от последующих нерегулируемых ступеней. Эта камера необходима для растекания пара в окружном направлении, чтобы обеспечить подвод пара к первой нерегулируемой ступе­ни по всей окружности без существенных аэ­родинамических потерь энергии.

    По условиям экономичной работы турбины с сопловым парораспределением при перемен­ном расходе пара в регулирующей ступени необходимо срабатывать повышенный тепло­вой перепад H 0 рс .

    Регулирующие ступени выполняют как од­новенечными, так и двухвенечными. Одновенечные активные регулирующие ступени обычно применяют для срабатывания сравни­тельно малых тепловых перепадов - до 80- 120 кДж/кг. Двухвенечные ступени применя­ют для перерабатывания сравнительно высо­ких тепловых перепадов-100-250 кДж/кг.

    Теплоперепад и соответственно тип регу­лирующей ступени выбирают с учетом следу­ющих особенностей влияния регулирующей ступени на конструкцию и экономичность турбины.

    1. Применение двухвенечной регулирую­щей ступени и, следовательно, большого теп-лоперепада H 0 рс приводит к сокращению числа нерегулируемых ступеней и снижению стоимости изготовления турбины. Однако в этом случае снижается КПД турбины при мощности, близкой к номинальной, так как экономичность двухвенечной регулирующей ступени существенно ниже, чем экономич­ность заменяемых нерегулируемых ступеней. Следует, однако, заметить, что потери энер­гии регулирующей ступени за счет явления возврата теплоты частично используются в последующих нерегулируемых ступенях. Поэтому при оценке снижения экономичности за счет регулирующей ступени необходимо учи­тывать явление возврата теплоты.

    2. При большом тепловом перепаде регу­лирующей ступени снижаются утечки пара через переднее концевое уплотнение, так как уменьшается давление в камере регулирую­щей ступени и, следовательно, перед перед­ним концевым уплотнением. Этот эффект осо­бенно заметен для турбин малой мощности, где относительная величина утечки велика.

    3. Повышенный тепловой перепад регули­рующей ступени обеспечивает снижение тем­пературы пара в камере регулирующей сту­пени и, следовательно, применение относи­тельно дешевых низколегированных сталей для ротора и корпуса турбины.

    В современных мощных турбинах в каче­стве регулирующей ступени применяют одновенечную ступень, так как преимущества по­вышенного теплоперепада по технико-эконо­мическим расчетам не оправдываются.

    В турбинах АЭС, работающих на насы­щенном паре, лопатки регулирующей ступени часто аварийно разрушаются в связи с боль­шими возмущающими усилиями при вибраци­ях лопаток. Эти усилия обусловлены специ­фикой течения влажного пара в клапанах и соплах регулирующей ступени. Поэтому сов­ременные мощные турбины АЭС, работаю­щие, как правило, при постоянной нагрузке, проектируют с дроссельным парораспределе­нием.

    Двухвенечные ступени находят примене­ние в качестве регулирующих ступеней в тур­бинах малой мощности, а также в турбинах с противодавлением и в турбинах с регули­руемыми отборами пара.

    Первые нерегулируемые ступени турбин небольшой мощности (ступени с малым объ­емным пропуском пара) отличаются неболь­шими высотами сопловых и рабочих лопаток. Для повышения КПД этих ступеней необхо­димо всеми возможными путями увеличивать высоту этих лопаток.

    Изобретение относится к системам парораспределения паровых турбин. Система регулирования направлением потока в камере регулирующей ступени паровой турбины содержит регулирующие клапаны, соединенные со своими сервомоторами, сопловые коробки, каждая со своим сегментом сопел, камеру регулирующей ступени, диафрагму первой ступени давления. Для регулирования направлением потока в камере регулирующей ступени используется поворотная диафрагма, содержащая поворотное кольцо. Поворотное кольцо разделяется на автономные сегменты, каждый из которых снабжен собственным сервомотором, рабочее положение которого в свою очередь связывается с определенным положением соответствующего ему регулирующего клапана. Система позволяет повысить эффективность и надежность парциального отсека паровой турбины путем улучшения организации течения в камере регулирующей ступени. 2 ил.

    Рисунки к патенту РФ 2432467

    Изобретение относится к области энергетического машиностроения, а точнее к паротурбиностроению, и предназначено для повышения эффективности работы первых ступеней давления цилиндра высокого давления (ЦВД) паровой турбины с сопловым парораспределением.

    При сопловом парораспределении впуск пара в турбину управляется несколькими регулирующими клапанами. От каждого клапана пар направляется к самостоятельному сегменту сопел и на рабочее колесо регулирующей ступени (PC). Таким образом, осуществляется парциальный впуск рабочего тела (р.т.) в камеру регулирующей ступени. Открытие клапанов происходит последовательно. В результате такой системы регулирования расхода р.т. перед первой ступенью давления создается неравномерное в окружном и радиальном направлениях поле скоростей .

    Известен способ снижения неравномерности параметров р.т. перед первой ступенью давления ЦВД, представляющий собой применение в камере регулирующей ступени перфорированного экрана . Данный способ не обеспечивает необходимого распределения параметров р.т. перед ступенью давления при переменных режимах работы паровой турбины, вследствие однозначного положения в окружном направлении перфорационных отверстий.

    Наиболее близким техническим средством решения к заявляемому является поворотная диафрагма , которая применяется для регулирования расхода р.т. для промышленных и теплофикационных потребителей. Поворотная диафрагма представляет собой сочетание диафрагмы и поворотного кольца, в котором выфрезерованы окна. С помощью сервомотора кольцо поворачивается относительно диафрагмы по заданной программе регулирования. В закрытом положении поворотной диафрагмы окна кольца располагаются напротив сопловых лопаток, и в этом случае пар не проходит, а при повороте кольца проход пара через окна открывается. Таким образом, площадь живого сечения соплового аппарата изменяется и зависит от положения поворотного кольца относительно диафрагмы.

    Недостатком является невозможность устанавливать различное сопротивление движению потока р.т. в окружном направлении.

    Близким техническим решением к заявляемому является система регулирования параметрами потока р.т. в паровой турбине, содержащая регулирующие клапаны, соединенные со своими сервомоторами, сопловые коробки, каждая со своим сегментом сопел, камеру регулирующей ступени, диафрагму первой ступени давления .

    Недостатком этой системы является отсутствие регулирования направлением потока р.т. в камере регулирующей ступени. При этом создается неравномерное в окружном и радиальном направлениях поле скоростей, что снижает коэффициент полезного действия первых ступеней давления и ЦВД в целом.

    Цель изобретения - повышение эффективности и надежности работы первых ступеней давления ЦВД паровой турбины с сопловым парораспределением путем снижения неравномерности параметров потока р.т. в окружном и радиальном направлениях в камере регулирующей ступени. В частности снижается уровень возмущающих сил и вибрации лопаток, возникающие вследствие неодинакового распределения давления по окружности перед первой ступенью давления.

    Поставленная цель достигается тем, что система регулирования направлением потока в камере регулирующей ступени паровой турбины, содержащая регулирующие клапаны, соединенные со своими сервомоторами, сопловые коробки, каждая со своим сегментом сопел, камеру регулирующей ступени, диафрагму первой ступени давления, снабжается системой регулирования направлением потока р.т. в камере регулирующей ступени. Работа системы осуществляется поворотной диафрагмой, содержащей поворотное кольцо, при этом поворотное кольцо разделяется на автономные сегменты, каждый из таких сегментов снабжен собственным сервомотором, рабочее положение которого в свою очередь связывается с определенным положением соответствующего ему регулирующего клапана.

    Положение поворотных сегментов кольца относительно диафрагмы определяет проходное сечение соответствующих им групп сопел. Следовательно, в окружном направлении появляется возможность устанавливать различное сопротивление сопловой решетки. Таким образом, устанавливая большее сопротивление напротив активной дуги PC, создаются условия равномерного распределения параметров р.т. в камере регулирующей ступени. Рабочее тело будет стремиться проходить через область наименьшего местного сопротивления. Связь системы регулирования положения сегментов кольца поворотной диафрагмы и системы регулирования расхода р.т. через регулирующие клапаны позволяет создавать оптимальные условия для организации течения р.т. в камере при переменных режимах работы турбины.

    Новым в системе регулирования параметрами потока р.т. в паровой турбине является регулирование направлением потока в камере регулирующей ступени через применение поворотной диафрагмы. Принцип влияния поворотной диафрагмы на организацию течения р.т. до сих пор не применялся для уменьшения неравномерности параметров р.т. в камере регулирующей ступени ЦВД.

    На фиг.1 представлен общий вид парциального отсека, на фиг.2 - система регулирования направлением потока рабочего тела в камере регулирующей ступени паровой турбины (вид А и вид Б с фиг.1).

    Парциальный отсек (фиг.1) содержит сопловую коробку 1, через которую осуществляется подвод р.т. к сегменту сопел 3, рабочее колесо регулирующей ступени 22, корпус 21, камеру регулирующей ступени 23, в которой происходит выравнивание параметров потока р.т. в окружном и радиальном направлениях после парциальной PC. Из камеры р.т. поступает на поворотную диафрагму 24, содержащую поворотное кольцо 5. Система автоматического регулирования (CAP) направлением потока р.т. в камере регулирующей ступени (фиг.2) представлена сопловыми коробками 1, 2, подающими пар к сегментам сопел 3, 4. Управление расходом р.т. осуществляется регулирующими клапанами 7, 8, приводом которых служит система золотников 13, 14 и сервомоторов 9, 10. При помощи рычажных связей система управления регулирующими клапанами связана с системой регулирования положения поворотных сегментов 5, 6. Поворот сегментов 5, 6 производится через систему золотников 15, 16 и сервомоторов 11, 12.

    Система регулирования направлением потока в камере регулирующей ступени паровой турбины осуществляется следующим образом (фиг.1. и фиг.2). Для удобства и наглядности изложения принципа действия предлагаемой системы рассматривается простой случай, когда применяются два регулирующих клапана 7, 8 и соответствующие им два поворотных сегмента 5, 6.

    При проектировании ЦВД паровой турбины в первой ступени давления устанавливается поворотная диафрагма с двумя поворотными сегментами 5, 6. Система регулирования паровой турбины снабжается дополнительной системой связи регулирующих клапанов с сервомоторами поворотных сегментов (фиг.2).

    При работе паровой турбины на расчетном режиме установлена оптимальная степень парциального впуска р.т. При этом в полностью открытом положении находятся оба регулирующих клапана 7, 8. Поворотные сегменты 5, 6 ступени давления занимают оптимальное положение с перекрытием проходного сечения соответствующих им групп сопел для равномерного распределения параметров р.т. в окружном направлении в камере. Сопротивление области расположения поворотных сегментов 5, 6 оказывается большим сопротивления полноподводной области сопловой решетки 20 ступени давления. Поток р.т. начинает быстрее заполнять безрасходную область 19 за PC и равномерно распределяться в окружном и радиальном направлениях, что важно для эффективной и надежной работы ступени давления. При необходимости уменьшить расход р.т. на турбину подается сигнал 17 от CAP на закрытие клапана 8 через систему золотник-сервомотор 10, 14. Одновременно по рычажным связям срабатывает система золотник-сервомотор 11, 15, которая приводит во вращение левый поворотный сегмент 5 на открытие проходного сечения сопловой решетки ступени давления. Сопротивление сопловой решетки ступени давления в области расположения левого поворотного сегмента 5 оказывается аналогичным сопротивлению полноподводной области. Большее сопротивление остается в области правого поворотного сегмента 6. Таким образом, поток р.т. будет эффективнее заполнять новую безрасходную область 19. При необходимости значительного снижения расхода р.т. от CAP подается сигнал 18 на закрытие клапана 7. В этом случае дополнительная система регулирования взаимодействия регулирующих клапанов и сервомоторов поворотных сегментов сработает аналогично вышеизложенному при сигнале 17. Таким образом, при изменении режимов работы турбины через систему регулирования направлением потока р.т. обеспечивается оптимальная настройка положения поворотных сегментов для равномерного распределения параметров р.т. в камере регулирующей ступени.

    Предлагаемая система регулирования направлением потока р.т. в камере регулирующей ступени через применение поворотной диафрагмы позволяет повысить эффективность и надежность парциального отсека паровой турбины путем улучшения организации течения р.т. в камере регулирующей ступени.

    ЛИТЕРАТУРА

    1. Щегляев А.В. Паровые турбины. Теория теплового процесса и конструкции турбин: Учеб. для вузов. В 2 кн. КН. 1. - 6-е изд., перераб., доп. и подгот. к печати Б.М.Трояновским. - М.: Энергоатомиздат, 1993, с.169, рис.8.7.

    2. Снижение неравномерности параметров потока при входе в сопловой аппарат первой нерегулируемой ступени паровой турбины с сопловым парораспределением. / А.Е.Зарянкин, Н.А.Зройчиков, С.В.Арианов [и др.]. // Теплоэнергетика. - 2006. - № 11 - С.4-9.

    3. Трухний А.Д., Ломакин Б.В. Теплофикационные паровые турбины и турбоустановки: Учебное пособие для вузов. - М.: Издательство МЭИ, 2002, с.99, рис.3.46.

    4. Трухний А.Д. Стационарные паровые турбины. - 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1990, с.399, рис.7.27. Там же с.400, рис.7.28.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    Система регулирования направлением потока в камере регулирующей ступени паровой турбины, содержащая регулирующие клапаны, соединенные со своими сервомоторами, сопловые коробки, каждая со своим сегментом сопел, камеру регулирующей ступени, диафрагму первой ступени давления, отличающаяся тем, что для регулирования направлением потока в камере регулирующей ступени используется поворотная диафрагма, содержащая поворотное кольцо, при этом поворотное кольцо разделяется на автономные сегменты, каждый из которых снабжен собственным сервомотором, рабочее положение которого в свою очередь связывается с определенным положением соответствующего ему регулирующего клапана.

  • Глобализация как новая ступень интернационализации мирового хозяйства. Место Республики Беларусь в формирующемся экономическом метапространстве
  • Организм как единая саморазвивающаяся и саморегулирующаяся биологическая система
  • Популяция как саморегулирующая система. Гомеостаз популяции
  • Расширительный сосуд; 2 - отопительные приборы (гладкие трубы); 3 - запорно - регулирующая арматура; 4 - обводка двери; 5 - слив воды из системы; 6 - отопительная установка
  • Синтез ВАК и НАК - высокая ступень Астрального Каратэ. Психотренинг в быту. Русские школы АК. Смертельные ката. Напутствие к бойцам АК.
  • Следующую ступень сословной лестницы занимали наиболее влиятельные феодалы - нахарары.
  • Регулирующая ступень ЦВД (ЧВД) – первая ступень турбины при сопловом парораспределении. Основная особенность – изменяющаяся степень парциальности при изменении расхода пара.

    Изменение степени парциальности происходит за счет изменения количества сопел регулирующей ступени, через которые подается пар в турбину, при изменении расхода пара на турбину. В связи с этим сопла РС объединяются в группы, образующие сопловые коробки, к каждой из которых пар подводится от своего регулирующего клапана. РС отделяется от других, нерегулируемых ступеней емкой камерой, которая необходима для растекания пара и выравнивания перед нерегулируемыми ступенями.

    По условиям экономичной работы турбины с сопловым парораспределением при переменном расходе пара в РС необходимо срабатывать повышенный теплоперепад. Это также упрощает конструкцию турбины (см. ниже).

    Увеличение срабатываемого теплоперепада достигается увеличением среднего диаметра ступени и использованием двухвенечной ступени (которая носит название ступени Кертиса или ступени скорости).

    РС выполняют только активными (с степенью реактивности каждого венца не более 1 -2 %) , как одновенечными (Н 0 =80 – 120 кДж/кг), так и двухвенечными (Н 0 = 100 – 250 кДж/кг). Для сравнения можно указать, что в нерегулируемых ступенях ЧВД (ЦВД) срабатывается теплоперепад Н 0 =40 – 60 кДж/кг. Таким образом, регулирующая одновенечная ступень замещает приблизительно 2, а двухвенечная 4 нерегулируемые активные ступени. При выполнении нерегулируемых ступеней с реактивным облопачиванием, одновенечная и двухвенечная РС замещают 3 - 4 или 5 - 8 реактивных ступеней соответственно.

    Выбор типа ступени осуществляется на основе технико-экономических расчетов. Из-за парциального подвода пара и потерь энергии с выходной скоростью КПД любой регулирующей ступени ниже КПД промежуточных нерегулируемых ступеней.

    Двухвенечная РС:

    · сокращается число ступеней ЧВД и снижается стоимость и габариты турбины;

    · снижаются утечки пара в переднее уплотнение;

    · снижаются температура и давление в камере РС, т. е. в цилиндре.

    Основной недостаток – сниженный по сравнению с одновенечной регулирующей ступенью КПД.

    Область применения двухвенечной РС – турбины малой мощности, турбины с регулируемыми отборами пара и с противодавлением.

    Одновенечная РС применяется практически на всех современных конденсационных турбинах, в т.ч. вообще во всех турбинах (и конденсационных и теплофикационных) на сверхкритические параметры пара, имеющих многостенную (двухкорпусную) конструкцию ЦВД.

    Рабочие и направляющие лопатки РС обязательно бандажируются. Бандаж чаще всего цельнофрезерованный с уплотнением. Цельнофрезерованные лопатки часто свариваются по бандажу и хвосту попарно, образуя пакеты. Это повышает вибрационную надежность лопаток, работающих при парциальном подводе пара в режиме постоянных импульсных нагрузок

    Выбор оптимальной степени парциальности и ее влияние на

    Поскольку с ростом степени парциальности потери на вентиляцию и сегментные потери уменьшаются, а потери в решетках, наоборот, возрастают из-за уменьшения высоты лопаток, то при относительно малых высотах лопаток существует некоторая оптимальная степень парциальности, при которой сумма всех указанных потерь минимальна.

    С уменьшением парциальности несколько уменьшается!


    | | 3 |

    Регулирующая ступень турбины

    Ступень турбины с изменяемым проходным сечением соплового аппарата

    Смотреть все термины ГОСТ 23269-78. ТУРБИНЫ СТАЦИОНАРНЫЕ ПАРОВЫЕ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

    Источник: ГОСТ 23269-78. ТУРБИНЫ СТАЦИОНАРНЫЕ ПАРОВЫЕ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

    • - одно из понятий всякой эволюционной теории, обозначающее отрезок в процессе развития, который характеризуется каким-то изменением, иным состоянием. Такие ступени имеются как в индивидуальном, так и в общем развитии...

      Начала современного Естествознания

    • - Регулирующая арматура Промышленная трубопроводная арматура, предназначенная для регулирования параметров рабочей среды посредством изменения ее расхода. Смотреть все термины ГОСТ 24856-81. АРМАТУРА ТРУБОПРОВОДНАЯ...

      Словарь ГОСТированной лексики

    • - Совокупность ряда расположенных по окружности каналов, образованных направляющими лопатками или соплами, и следующего за ним вращающегося ряда каналов, образованных рабочими лопатками, с элементами установки,...

      Словарь ГОСТированной лексики

    • - Двухвенечная ступень турбины Ндп. Ступень скорости, Ступень Кертиса Ступень турбины, в которой пар в первом неподвижном ряду каналов расширяется до заданных параметров и образующаяся кинетическая энергия...

      Словарь ГОСТированной лексики

    • - Осевая ступень турбины Ступень турбины, в которой поток пара, совершая работу, движется по поверхностям, близким к цилиндрическим Смотреть все термины ГОСТ 23269-78. ТУРБИНЫ СТАЦИОНАРНЫЕ ПАРОВЫЕ...

      Словарь ГОСТированной лексики

    • - Радиальная ступень турбины Ступень турбины, в которой поток пара, совершая работу, движется в радиальном направлении по поверхностям, перпендикулярным оси вращения ротора турбины Смотреть все термины ГОСТ 23269-78...

      Словарь ГОСТированной лексики

    • - Радиально-осевая ступень турбины Ступень турбины, в которой поток пара, совершая работу, изменяет направление движения от радиального к осевому Смотреть все термины ГОСТ 23269-78. ТУРБИНЫ СТАЦИОНАРНЫЕ ПАРОВЫЕ...

      Словарь ГОСТированной лексики

    • - совокупность вращающегося и неподвижного лопаточных венцов...

      Энциклопедия техники

    • - Британская саморегулирующая организация, созданная в соответствии с Законом о финансовых услугах для регулирования деятельности организаций, занимающихся куплей-продажей ценных бумаг и...

      Экономический словарь

    • - Саморегулирующая организация в Великобритании, отвечающая за регулирование деятельности организаций, предлагающих услуги по страхованию жизни, и паевых доверительных инвестиционных фондов в...

      Экономический словарь

    • Большой бухгалтерский словарь

    • - трубопроводная арматура, предназначенная для регулирования расхода транспортируемых продуктов и поддержания заданного давления в трубопроводной сети - регулираща тръбопроводна арматура - regulační potrubní armatura -...

      Строительный словарь

    • - часть оросительной или осушительной сети, предназначенная для регулирования влажности почвы - регулираща мрежа - meliorační síť - Wasserregulierungsnetz - szabályozó hálózat - тохируулга шугам сүлжээ - sieć regulująca - reţea de regularizare - mreža za...

      Строительный словарь

    • - запись, совершаемая в конце отчетного периода для отражения операций, которые по определенным причинам не были записаны или были неправильно записаны в течение этого периода...

      Словарь бизнес терминов

    • - См.: саморегулирующая организация...

      Словарь бизнес терминов

    • - побудительная функция цены, способность изменений в ценах повлечь за собой изменение величины спроса на продукты и ресурсы, а также объема их предложения...

      Большой экономический словарь

    "Ступень турбины регулирующая" в книгах

    Турбины

    Из книги Густав Лаваль автора Гумилевский Лев Иванович

    Турбины В то время, как часть изобретателей всех стран и многих поколений работала над созданием двигателей с прямолинейно-возвратным движением, другая часть их, направляясь по иному пути, трудилась над созданием двигателей без цилиндра и поршня, двигателей с

    Паровые турбины не для авиации

    Из книги «Пламенные моторы» Архипа Люльки автора Кузьмина Лидия

    Паровые турбины не для авиации Нельзя сказать, что над применением газовой турбины для самолетов в нашей стране до этого никто не думал. Теоретическое обоснование применения газовой турбины в авиации в 1935 году дано профессором Уваровым. Им же в Москве был разработан

    VI. Религиозные акты и регулирующая сила закона

    Из книги автора

    VI. Религиозные акты и регулирующая сила закона До сих пор речь шла главным образом об экономических отношениях, так как гражданское право у дикарей, как и у нас, касается в основном собственности и богатства. Но и в любой другой сфере племенной жизни можно найти правовые

    Запорно-регулирующая арматура

    Из книги Отопление и водоснабжение загородного дома автора Смирнова Людмила Николаевна

    Запорно-регулирующая арматура

    НЕВОЗВРАТНЫЕ ТУРБИНЫ

    Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

    НЕВОЗВРАТНЫЕ ТУРБИНЫ Но их кардинальный недостаток - это их невозвратность, которая вынуждает для заднего хода использовать отдельные турбины. Все это, помимо высоких расходов и значительных потерь на трение, налагает узкие ограничения на температуру рабочего тела.

    2. Турбины

    автора Гумилевский Лев Иванович

    2. Турбины ФурнейронБурден знал о работах своего ученика, хотя Фурнейрон держал их в секрете. Из опытных моделей Фурнейрона одна - мощностью в шесть лошадиных сил - казалось, отвечала всем требованиям конкурса. Оставалось только разрешить задачу о регулировании ее хода.

    Глава шестая. Турбины

    Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

    Глава шестая. Турбины

    3. Многоступенчатые турбины

    Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

    3. Многоступенчатые турбины Рато«Чтобы иметь успех и избежать ошибок в области прикладной механики, все ваши поиски должна сопровождать математика!»Молодой человек, неустанно повторявший эти слова своим ученикам, был самым юным профессором в мире. Ему шел двадцать

    4. Газовые турбины

    Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

    4. Газовые турбины Общий трудКак только выяснились преимущества паровой турбины над паровой машиной, так тотчас же появились теоретические исследования о рабочем процессе газовой турбины и начались практические опыты ее осуществления. Проблема газовой турбины

    Какова нормативная база, регулирующая вызывное производство?

    Из книги Гражданский процесс в вопросах и ответах автора Власов Анатолий Александрович

    Какова нормативная база, регулирующая вызывное производство? Восстановление прав по утраченным ценным бумагам в порядке особого производства характерно тем, что здесь учитываются и защищаются интересы всех предполагаемых субъектов как имущественных, так и

    § 1. Регулирующая роль государства США в сфере экономики и социальных отношений

    Из книги История государства и права зарубежных стран. Часть2 автора Крашенинникова Нина Александровна

    § 1. Регулирующая роль государства США в сфере экономики и социальных отношений К концу XIX - началу XX в. Америка превращается в страну классического корпоративного капитализма, в которой без всяких ограничений действовали гигантские тресты, монополии, ограничивающие

    Точка, регулирующая жировые отложения на животе

    Из книги Точечный массаж для снижения веса автора Медведев Александр Николаевич

    Точка, регулирующая жировые отложения на животе Для уменьшения объема живота в качестве дополнительной точки используется точка Да-чан-шу (рис. 20). Рис. 20Точка Да-чан-шу располагается на уровне промежутка между остистыми отростками четвертого и пятого поясничных

    Разнос турбины

    Из книги Катастрофы под водой автора Мормуль Николай Григорьевич

    Разнос турбины 20 ноября 1965 года атомная ракетная подводная лодка «К-74» проекта 675 (по классификации НАТО - «Эхо-1») отрабатывала задачи в полигонах боевой подготовки Северного флота. Материальная часть исправна, замечаний нет. Уверенно выполнив все предусмотренные Курсом

    Контролирующая и регулирующая функция стилей

    Из книги Невротические стили автора Шапиро Дэвид

    Контролирующая и регулирующая функция стилей Сначала психоанализ исследовал природу и развитие инстинктивных влечений, а затем обратился к вопросу о том, как сдерживается и контролируется напряженная потребность, требующая немедленного

    Сила, регулирующая систему

    Из книги Инки. Быт. Культура. Религия автора Боден Луи

    Сила, регулирующая систему Теперь, когда мы достаточно подробно ознакомились со структурой государства инков, можно суммировать главные итоги. Основная масса населения была организована для производства продуктов либо в форме продовольствия, получаемого с

    В турбинах с сопловым парораспределением первая ступень, работающая с изменяющейся степенью парциальности при изменении расхода пара, называется регулирующей. Сопла регулирующей ступени объединены в группы, расположенные в сопловых коробках. Каждая сопловая коробка сообщается со своим регулирующим клапаном. Обычно турбина имеет четыре регулирующих клапана, следовательно, четыре сопловых коробки, четыре группы сопел. При сопловом парораспреде-лении регулирующие клапаны работают последовательно, поэтому по мере открытия или прикрытия клапанов изменяется число активных сопел, следовательно, изменяется степень парциальности ступени. И даже при всех полностью открытых клапанах степень парциальности регулирующей ступени меньше единицы за счет промежутков между сопловыми коробками. Регулирующая ступень конструктивно отделена от последующих ступеней. Это обеспечивает интенсивное перемешивание пара и относительно равномерное распределение его по окружности последующих ступеней, что способствует их нормальной работе. На регулирующую ступень назначается повышенный теплоперепад. Регулирующие ступени могут иметь один или два ряда рабочих лопаток. Отсюда их название: одно- или двухвенечные. Каждый тип имеет свои достоинства и недостатки. Одновенечная ступень при расчетном режиме имеет более высокий КПД (η oi = 0,78–0,82), чем двухвенечная, но при частичных нагрузках её КПД падает более интенсивно. КПД двухвенечной ступени ниже (η oi = 0,75–0,78), но устойчивее при частичных нагрузках. Двухвенечная ступень способна переработать значительно более высокий теплоперепад, чем одновенечная, что позволяет снизить число нерегули-руемых ступеней турбины, упростить её конструкцию, а также снизить утечку пара через переднее концевое уплотнение. Высокий теплоперепад двухвенечной ступени способствует увеличению удельного объема пара в первых нерегулируемых ступенях, что обеспечивает увеличение высоты лопаток и степени парциальности. А это, в свою очередь, повышает КПД этих ступеней. Кроме того, высокий теплоперепад двухвенечной ступени обеспечивает снижение температуры пара, что позволяет применять более дешевые стали для головной части турбины. С другой стороны, высокий теплоперепад, назначаемый на двухвенечную ступень с пониженным КПД, приводит к некоторому снижению КПД всей турбины. Для одновенечных ступеней со средним диаметром 1,0–1,1 м оптимальное значение тепло-перепада составляет 80–120 кДж/кг, а для двухвенечных – 150–250 кДж/кг.

    Тип регулирующей ступени, а, следовательно, и теплоперепад, выби-раются в зависимости от типа и назначения проектируемой турбины. Турбина большой мощности, которую целесообразно использовать как базовую, должна иметь максимальный КПД на расчетном режиме. Для неё следует выбирать одновенечную регулирующую ступень, хотя это приве-дет к некоторому усложнению и удорожанию конструкции. Турбина малой мощности может проектироваться как полупиковая, или пиковая. Здесь большое значение имеет устойчивость её КПД при нерасчетных режимах и более низкая стоимость. Поэтому для такой турбины следует выбирать двухвенечную ступень . На практике двухвенечные ступени приме-няются в турбинах малой мощности, в турбинах с противодавлением и с регулируемыми отборами пара.

    Для выбранного типа регулирующей ступени задаются характерис-тическим отношением скоростей U /C a (отношением окружной скорости к фиктивной), которое определяет уровень КПД проектируемой ступени. Для одновенечных ступеней его оптимальное значение обычно составляет (U /C a ) opt = 0,4–0,43, а для двухвенечных – (U /C a ) opt = 0,26–0,33 (бóльшие значения – для мéньших теплоперепадов ). Парциальный подвод, а также малая высота лопаток несколько снижают (U /C a ) opt .

    Выбранный теплоперепад регулирующей ступени откладывается на диаграмме H S от точки (рис. 2, 3), после чего оцениваются размеры ступени в следующем порядке:

    фиктивная скорость, м/с:

    ;

    окружная скорость, м/с:

    ;

    средний диаметр ступени, м:

    где n = 3000 об/мин.

    Минимальное значение d рс = 0,8 м, максимальное – 1,1 м; если диаметр выходит из этого интервала, следует перезадаться теплоперепадом или значением (U /C a ) opt ;

    теплоперепад сопловой решетки, кДж/кг:

    где ρ Т – суммарная степень реактивности; для одновенечных ступеней ρ Т = 0,03–0,07, для двухвенечных – ρ Т = 0,06–0,12;

    абсолютная теоретическая скорость истечения из сопел, м/с:

    проходная площадь сопловой решетки, м 2:

    где – удельный объем за сопловой решеткой регулирующей ступени, м 3 /кг, рис. 3; μ 1 – коэффициент расхода сопловой решетки, первоначально принимается μ 1 = 0,97;