Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Локальные виды коррозии. Питтинговая коррозия: причины. Методы защиты металлов от коррозии

    Локальные виды коррозии. Питтинговая коррозия: причины. Методы защиты металлов от коррозии

    Д.т.н. Ю.В. Балабан-Ирменин, главный научный сотрудник, лаборатория «Водного режима и коррозии оборудования ТЭС» ОАО «Всероссийский теплотехнический институт» (ВТИ), г. Москва

    (из книги Ю.В. Балабан-Ирменина, В.М.Липовских, А.М. Рубашова «Защита от внутренней коррозии трубопроводов водяных тепловых сетей», М.: Издательство «Новости теплоснабжения», 2008 г.)

    Особенности механизма возникновения локальной коррозии сталей

    Ярко выраженная неравномерная или локальная электрохимическая коррозия характерна для углеродистых сталей во многих производственных процессах, где металл контактирует с аэрированной природной водой (системы холодного и горячего водоснабжения, охлаждения и т.д.). Суммарное содержание в природных водах коррозионно-агрессивных ионов (сульфатов и хлоридов) составляет не менее 5 мг/кг. Коррозия в этих системах протекает с катодным контролем , а влияние состава стали на скорость коррозии минимально или вообще отсутствует . Считается, что в таких условиях скорости коррозии углеродистых сталей и низколегированных сталей, содержащих суммарно не более 2-3% Сг, Ni, Mn, Mo, достаточно близки, а процесс коррозии металла находится в области активного растворения . Поэтому локальные повреждения перлитных сталей в системах холодного водоснабжения, горячего водоснабжения, в холодной натрий-катионированной воде и в сетевой воде связывались с возникновением пар неравномерной аэрации, а также с другими случаями макронеоднородности поверхности металла. Необходимо отметить, что углеродистая сталь может пассивироваться в высокочистой нейтральной воде (дистиллят и бидистиллят) . Но такая чистая вода в отечественных теплосетях не используется, а наличие в воде сульфатов и хлоридов вызывает депассивацию стали.

    В тепловых сетях используется практически природная вода, т.к. анионный состав исходной воды при подготовке подпиточной воды теплосети изменяется несущественно. Однако условия в теплосети резко отличаются от условий в вышеперечисленных технологических процессах. В системах водопровода, горячего водоснабжения (для закрытых систем теплоснабжения) и охлаждения используется аэрированная вода с содержанием кислорода от 9,1 мг/кг (при температуре 20 О С) до 3,7 мг/кг (при температуре 70 О С). Содержание кислорода в сетевой воде не должно превышать 20 мкг/кг, хотя на практике оно несколько выше.

    Исследования коррозии углеродистых сталей в условиях теплосети при содержании кислорода 30-40 мкг/кг и значениях рН выше 7 показали, что на анодных поляризационных кривых, снятых в отсутствие сульфатов и хлоридов, наблюдается область пассивного состояния металла. При повышении концентрации хлоридов до 10 мг/кг и отсутствии сульфатов на кривых появлялась область питтингообразования. При увеличении содержания в воде сульфатов и хлоридов ширина диапазона потенциалов, отвечающих пассивному состоянию металла, снижалась. Причем депассивирующее действие сульфатов было намного больше, чем хлоридов. При достаточно высоких концентрациях сульфатов и хлоридов (в зависимости от значения рН и температуры) область пассивности на анодных кривых исчезала и они имели гладкую форму (в этих условиях питтингообразование могло начинаться уже при потенциале коррозии). Повышение значения рН расширяло диапазон концентраций сульфатов и хлоридов, при которых на анодных кривых сохранялась область пассивности, что связано с увеличением защитных свойств железооксидных пленок.

    В большинстве случаев при наличии на анодных кривых области пассивного состояния металла потенциал коррозии стали находился в области активного равномерного растворения, где скорость коррозии была очень низкой (6-часовая выдержка образца стали в деаэрированной воде при рН=8,6 и температуре 90 О С не вызывала даже потускнения поверхности стали). При малых концентрациях хлоридов, сульфатов и значениях рН >9,2 потенциал коррозии находился в области пассивности (самопассивация).

    Содержание кислорода в воде систем водоснабжения и охлаждения в ходе их эксплуатации практически не изменяется. Напротив, для сетевой воды характерны периодические резкие изменения концентрации кислорода за счет нарушения режима деаэрации. Например, на одной крупной ТЭЦ в 1992-1994 гг. содержание кислорода в прямой сетевой воде превышало 200 мкг/кг в течение 500-600 ч в году. Известны случаи, когда на некоторых ТЭЦ периодически подавали в теплосеть недеаэрированную подпиточную воду с содержанием кислорода более 9 мг/кг.

    Увеличение концентрации кислорода в воде приводит к растормаживанию катодного процесса и смещению потенциала коррозии стали в положительном направлении. Небольшое увеличение концентрации кислорода может привести к сдвигу потенциала коррозии из области активного растворения в область пассивного состояния металла, а значительное увеличение концентрации кислорода смещает потенциал коррозии в область питтингообразования. Даже небольшие, но частые увеличения содержания кислорода в сетевой воде повышают опасность образования питтингов, развивающихся далее в язвы.

    В условиях теплосети локальное разрушение пассивной пл енки на стали обычно происходит под воздействием ионов-активаторов, в первую очередь сульфатов, при увеличении содержания кислорода. Чем выше концентрация активаторов, тем меньшая концентрация кислорода вызывает образование питтингов. Питтингооб- разование может протекать и при нормативной концентрации кислорода в сетевой воде в случае очень высоких концентраций хлоридов и сульфатов. Разрушение пассивной пленки происходит в первую очередь в ее дефектах, которые часто связаны с нарушениями в поверхностном слое металла: неметаллическими включениями и дислокациями .

    При нормативном содержании кислорода в воде коррозия металла трубопроводов теплосети протекает обычно в области активного, равномерного растворения с кислородной деполяризацией. Поэтому возникновение локальных поражений металла может быть связано с наличием пар неравномерной аэрации и неоднородностью железооксидных пленок на поверхности стали.

    Проведенный в 1988 г. осмотр большого количества труб, эксплуатировавшихся в районах Тепловых сетей «Мосэнерго», показал, что достаточно часто наросты продуктов коррозии и язвы под ними располагаются линейно и ориентированы параллельно сварному шву. Линейно расположенные коррозионные поражения были отмечены в различных районах Тепловых сетей на 10-30% труб. В то же время на ряде труб были обнаружены полосы другого типа. Например, на параллельно-шовной трубе диаметром 500 мм на внутренней поверхности параллельно оси трубы находилась полоса темного гладкого плотного оксидного слоя, похожего на окалину, шириной 6-8 мм. Вся остальная поверхность трубы была покрыта более толстым слоем рыхлых (особенно по краям полосы) бугристых отложений темно-бурого цвета. Подобная полоса не могла образоваться в процессе эксплуатации, а явно существовала на новой трубе. Для изучения ситуации с состоянием новых труб были обследованы трубопроводы на центральном складе. На внутренней поверхности большинства

    сварных труб диаметром более 500 мм как прямошовных, так и спиральношовных, визуально наблюдались линейные участки, отличающиеся по своему внешнему виду от остальной поверхности трубы. На наружной поверхности новых труб такие полосы не были обнаружены.

    Полоски проходили параллельно сварному шву трубопровода как вплотную к шву, так и вдали от него. Они имели цвет и структуру, значительно отличающуюся от остальной поверхности. Если вся поверхность трубы покрыта рыхлым слоем оксидов железа рыжего или темно-бурого цвета, то поверхность металла на этих полосах покрыта тонким плотным оксидным слоем, как правило, более темного цвета по сравнению с окружающей поверхностью. Ширина полос составляла 10-20 мм.

    Соответствие расположения линейных участков неоднородности внутренней поверхности труб местам коррозионных повреждений позволило предположить наличие связи между ними. Поэтому в дальнейшем были проведены прямые эксперименты по определению коррозионной стойкости различных участков внутренней поверхности труб, а также металлографические исследования .

    Металлографические исследования темплетов, вырезанных из новых труб, показали, что темный цвет полос определяется наличием на поверхности металла окалины, а на остальной части трубы окалина отсутствует и оксидный слой состоит из продуктов атмосферной коррозии. Отличий в структуре металла на различных участках труб не обнаружено. Под слоем окалины зафиксирована повышенная микротвердость металла (наклеп), обычно приводящий к снижению коррозионной стойкости. Характер коррозионного разрушения труб под рыхлой ржавчиной объемно-кристаллический, т.е. разрушение протекало равномерно, в результате чего получалась рельефная металлическая поверхность. На образцах с гладкой темной окалиной локальные коррозионные разрушения наблюдались только в местах нарушения ее сплошности.

    Для исследования влияния состояния поверхности труб на их коррозионное поведение из новой прямошовной трубы диаметром 820 мм вырезали образцы, содержавшие темную полосу окалины, и образцы, покрытые ржавчиной. Пары образцов с окалиной и ржавчиной погружали в аэрированную сетевую воду с температурой 70 О С и методом гальванопар определяли направление и величину тока, протекающего между образцами.

    Измерения потенциалов коррозии и направления тока между образцами свидетельствуют о защитных свойствах плотного слоя окалины, но согласно поляризационным измерениям образцы с окалиной более склонны к язвенной коррозии. Локализация коррозии трубопроводов теплосети под полосами окалины объясняется тем, что в окалине имеются отдельные дефекты (поры, микротрещины и т.д.), через которые к поверхности металла проникает вода, содержащая растворенный кислород. В ходе коррозии полосы окалины в результате отслаивания могут исчезать, но образовавшиеся в дефектах окалины язвы продолжают развиваться.

    Характерным примером разрушения трубопроводов, связанным с наличием на их внутренней поверхности полос окалины, является разрыв спиральношовного трубопровода по цепочке язв, расположенной параллельно сварному шву (но не вплотную к нему). Разрушения вдоль сварного шва могут быть связаны как с зоной термического влияния сварки, так и с полосами окалины, расположенными вплотную к шву. Для определения причин появления полос окалины на внутренней поверхности новых сварных труб большого диаметра была изучена технология производства труб на трубопрокатных заводах. В результате выяснилось, что полосы являются следами валков, формирующих трубы. Таким образом, наличие на внутренней поверхности труб полос окислов с различной защитной способностью, возникающих в процессе производства труб, во многом определяет зарождение и развитие язвенной коррозии металла в эксплуатационных условиях теплосети.

    Влияние приварки опор

    Статистический анализ повреждаемости оборудования Тепловых сетей «Мосэнерго» за 1985-1987 гг. выявил достаточно высокий уровень повреждений от внутренней коррозии в местах приварки как скользящих, так и неподвижных опор. Коррозионное разрушение металла в этом случае выглядит как канавка на внутренней поверхности точно напротив места наружной приварки опоры.

    Металлографические исследования, проведенные ВТИ на вырезках из трубопроводов теплосети в месте приварки опор, не показали изменения структуры металла внутренней поверхности труб. Исходя из имеющихся данных по влиянию оксидных слоев на внутреннюю коррозию трубопроводов теплосети, можно предположить, что и в данном случае одной из причин локальной коррозии является неоднородность оксидной пленки. Термическое влияние сварки, в особенности при больших значениях тока сварки, может приводить к изменению структуры и защитных свойств оксидной пленки на внутренней поверхности труб за счет ее нагрева. Повышение неоднородности поверхности стали в месте сварки может вызывать интенсификацию локальной коррозии. Для проверки этого предположения было проведено исследование термического влияния приварки опор на локальную коррозию трубопроводов .

    Язвенная коррозия на внутренней поверхности труб в местах приварки опор объясняется следующими причинами. Термическое влияние сварки приводит к тому, что оксидная пленка на внутренней поверхности трубы напротив шва уплотняется и, в целом, становится более защитной, чем вне зоны термического влияния. В то же время резкий нагрев и последующее охлаждение места приварки вследствие различия коэффициентов теплового расширения металла и его оксидов создает в пленке внутренние напряжения, вызывающие ее растрескивание. В возникающих коррозионных элементах поверхность с плотной оксидной пленкой становится катодом, а участки металла в ее дефектах - анодами. Нагрузки на металл в местах приварки опор усиливают деформацию нагреваемого металла. Поэтому совмещение термического влияния сварки с механическими нагрузками значительно ускоряет зарождение и развитие язвенной коррозии в местах приварки опор.

    Конструкция опор, где при наличии неоднородности внутренней поверхности, вызываемой сваркой, могут возникать значительные нерасчетные механические напряжения, является коррозионно-опасной. В связи с этим необходимо при реконструкции и перекладке трубопроводов устанавливать скользящие опоры, в конструкции которых не применяется приварка опор к трубопроводу.

    Влияние состава стали. Неметаллические включения

    Влияние состава стали и возможно неметаллических включений на коррозионные процессы в условиях теплосети подтверждается следующими данными. При исследовании процессов локальной коррозии металла труб в западном районе теплосети г. Ростов-на-Дону были обнаружены резкие отличия в поведении сталей, имеющих суммарное содержание примесей не более 2% . Длительная (более 18 лет) работа подающего трубопровода диаметром 1020x10 мм при различных водно-химических режимах западного района ростовской теплосети привела к тому, что на нижней образующей трубы образовалась дорожка шириной 200-300 мм, отложения на которой состояли из оксидов железа. Остальная часть периметра трубы имела отложения сложного состава, включающие СаСО 3 . На нижней образующей трубы были обнаружены язвы. При этом на ряде участков локальные поражения выглядели как одна или две цепочки воронкообразных язв глубиной до 7 мм, иногда переходящих в свищи. На других участках трубы вместо глубоких язв образовывалась россыпь мелких (глубиной 1-2 мм) «блюдцеобразных» язв. Несмотря на то, что в обоих случаях внутренняя поверхность трубопроводов имела коррозионные локальные поражения, опасность глубоких язв значительно выше вследствие повышения вероятности образования свищей.

    Анализ химического состава стали показал, что участки с глубокими язвами были выполнены из сталей 10 и 20, а участок трубы с мелкими язвами - из стали 17Г1С.

    Стандартные металлографические исследования не позволили вскрыть причины отличий в коррозионном поведении сталей 20 и 17Г1С. Можно предположить, что отличие в характере локальной коррозии этих сталей связано с различиями их химического состава, определяющего наличие на поверхности металла коррозионно-опасных микровключений. Основным отличием стали 17Г1С от сталей 10 и 20 является повышенное содержание кремния и марганца. Влияние неметаллических включений на локальную коррозию сталей различного класса, имеющих на поверхности пассивирующую оксидную пленку, должно быть одинаково. Общей закономерностью является возможность локального разрушения защитной пленки в месте расположения коррозионно-опасных включений. Поэтому экспериментальные данные, полученные при исследовании локальной коррозии нержавеющих сталей, могут быть использованы при рассмотрении процесса локальной коррозии трубопроводов теплосети.

    Для нержавеющих сталей аустенитного и фер- ритного класса на основе большого объема исследований показано, что существует критическое произведение (П ф) концентраций в стали марганца (Mn) и серы (S), составляющее (2+5).10 -3 (%) 2 . При П=[Мп].^]<П кр количество коррозионно-активных включений марганца и серы настолько мало, что практически не влияет на локальную коррозию металла . При П>П ф происходит увеличение количества микровключений марганца и серы. Одновременно ухудшаются коррозионно-электрохимические характеристики сталей. Можно предположить, что в стали 17Г1С (П=0,041 (%) 2) количество коррозионно-активных включений марганца и серы значительно выше, чем в сталях 10 и 20 (П=0,01+0,014 (%) 2).

    Эксплуатационный опыт теплосети г. Ярославля, использующей менее агрессивную, чем донская, волжскую воду, также показывает, что сталь 17Г1С имеет значительно более высокую коррозионную стойкость, чем стали 10 и 20.

    Приведенные примеры свидетельствуют, что состав стали и неметаллические включения могут очень сильно влиять на коррозионную стойкость углеродистых сталей в условиях теплосети (об исследованиях в этой области также см. статью «Повышение коррозионной стойкости сталей для труб тепловых сетей путем обеспечения чистоты по коррозионно-активным неметаллическим включениям», журнал НТ, № 9, 2005, с. 41-45 - прим. ред.).

    Литература

    1. Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Л.: Химия, 1989.

    2. Коррозия и защита химической аппаратуры / Под ред. А.М. Сухотина. Т. 3. Л.: Химия, 1970.

    3. Томашов Н.Д. Теория коррозии и защиты металлов. М.: Изд-во АН СССР, 1959.

    4. Акользин П.А. Предупреждение коррозии оборудования технического водо- и теплоснабжения. М.: Металлургия, 1988.

    5. Рейзин Б.Л., Стрижевский И.В., Шевелев Ф.А. Коррозия и защита коммунальных водопроводов. М.: Стройиздат, 1979.

    6. Рейзин Б.Л., Стрижевский И.В., Сазонов Р.П. Защита систем горячего водоснабжения от коррозии. М.: Стройиздат, 1986.

    7. Локальная коррозия металла теплоэнергетического оборудования / Под ред. В.П. Горбатых. М.: Энергоатомиздат, 1992.

    8. Колотыркин Я.М., Флорианович Г.М., Петров П.С. и др. О применении кислорода для защиты сталей от коррозии в воде при высоких температурах/ Коррозия реакторных материалов. М.: Атомиздат, 1960. С. 29-41.

    9. Подобаев Н.И., Шакиров А.С., Жданова Э.И. Влияние ингибитора СКМ-1 на коррозию стали и потенциал коррозии железа в дистиллированной и слабоминерализованной воде // Защита металлов. 1992. Т. 28. № 3. С. 437-444.

    10. Фрейман Л. И. Стабильность и кинетика развития питтин- гов. Итоги науки и техники. Серия коррозия и защита от коррозии. М.: ВИНИТИ, 1985. Т. 11. С. 3-71.

    11. Балабан-Ирменин Ю.В., Ершов Н.С., Липовских В.М. и др. Влияние неоднородности поверхности трубопроводов на внутреннюю коррозию в теплосети // Электрические станции. 1990. № 5. С. 37-42.

    12. Балабан-Ирменин Ю.В., Рубашов А.М., Бритвина О.В. и др. Исследование термического влияния приварки опор на развитие локальной коррозии трубопроводов теплосети // Теплоэнергетика. 1990. № 9. С. 22-25.

    13. Балабан-Ирменин Ю.В., Шереметьев О.Н., Меламед М.М. Влияние химического состава стали на коррозию при контакте с водой теплосети // Электрические станции. 1998. № 10. С. 34-38.

    14. Фрейман Л.И., Реформатская И.И., Маркова Т.П. Взаимосвязь влияния легирующих элементов и сульфидных включений на пассивируемость и питтингообразование нержавеющих сталей // Защита металлов. 1991. Т. 27. № 4. С. 617-625.

    ООО «Издательство «Новости теплоснабжения» предлагает книгу 363 руб «Защита от внутренней коррозии трубопроводов водяных тепловых сетей» Авторы: Балабан-Ирменин Ю.В., Липовских В.М., Рубашов А.М.

    Книга рассчитана на эксплуатационный инженерно-технический персонал предприятий тепловых сетей, электростанций и котельных, сотрудников наладочных, проектных и научно-исследовательских организаций.

    Подробнее ознакомиться с содержанием и заказать книгу можно на сайте

    Nikolay_K 09-08-2013 02:57

    КАКИЕ СТАЛИ ПОДВЕРЖЕНЫ ПИТТИНГОВОЙ КОРРОЗИИ

    Nikolay_K 09-08-2013 03:03

    КАКИЕ ФАКТОРЫ СПОСОБСТВУЮТ РАЗВИТИЮ ПИТТИНГОВОЙ КОРРОЗИИ
    ============================================

    При питтинговой (точечной) коррозии разрушению подвергаются только отдельные участки поверхности, на которых образуются глубокие поражения - питтинги (точечные язвы).

    Наблюдается питтинговая коррозия при воздействии на металл или сплав не только пассиваторов (приводят поверхность в пассивное состояние, например, окислитель), но и ионов-активаторов (Cl-, Br-, J-). Активно протекает питтинговая (точечная) коррозия в морской воде, смеси азотной и соляной кислот, растворах хлорного железа, других агрессивных средах.

    Склонность к питтинговой коррозии определяется некоторыми факторами:

    Природой металла или сплава;

    Температурой (с повышением температуры растет количество питтингов);

    Состоянием поверхности (хорошо отполированная поверхность более стойкая, чем шероховатая);

    РН среды (чаще возникают питтинги в кислых средах);

    Примесями в среде (наличием ионов-активаторов).

    gromootvod69 14-08-2013 10:27


    Глядите и думайте!

    radioboot 14-08-2013 12:17

    1-й ножеман: А чето мне D2 в последнее время не нравится...
    2-й ножеман: Не нравится - не ешь!*

    puphik 14-08-2013 12:25



    Вот это я понимаю ПИТИНГОВАЯ КОРРОЗИЯ!!!


    Nikolay_K 14-08-2013 16:22



    Нет, это ЯЗВЕННАЯ КОРРОЗИЯ!!!

    wren 14-08-2013 17:31

    quote: Originally posted by gromootvod69:
    При всем уважении почтеннейшие, но разве на ваших фото это коррозия, да это детская забавка. Вот у меня питтинг получился на опасной бритве, так это да! И всего за 4 суток.
    Консервировал я помидоры и огурцы, и вот остался после всего процесса примерно литр рассола с пряностями и с чуть-чуть яблочного уксуса, горячий, ароматный, ну думаю, чего добру пропадать, -отлил его в чашку для бритья да и побрился. бритву очень тщательно вытер бумажной салфеткой......и через четыре дня,-О УЖАС! Бритве КАЮК! Вот это я понимаю ПИТИНГОВАЯ КОРРОЗИЯ!!!
    Глядите и думайте!


    Объясните мне,зачем нужно было бриться рассолом?
    Что это даёт,кроме коррозии на бритве?

    Boss28 14-08-2013 18:41



    Нет, это ЯЗВЕННАЯ КОРРОЗИЯ!!!

    Да не, это просто ржавчина и соль этот процесс сильно ускорила. И всего-то промыть водой было нужно.

    1shiva 14-08-2013 19:22

    quote: Originally posted by gromootvod69:

    отлил его в чашку для бритья да и побрился


    Хоть бритье-то понравилось?Убивца:-)
    С уважением,1shiva

    puphik 14-08-2013 20:30

    quote: Originally posted by Nikolay_K:

    а чем отличается язвенная коррозия от питтинговой?


    Формой поражения. У питтинга самый большой размер глубина, а у язвы глубина сравнима с поперечными размерами, чаще меньше них.

    falcone 16-08-2013 10:28

    Зараза эта точечная коррозия Ржу углеродок легко устранять,протер тряпочкой с маслицем и порядок,запустил чуток - протер тряпочкой с пастой и отлично,а эти точки краттеры и пастой не сотрешь. Два варианта- или наплевать и не обращать внимания или перешлифовка

    Ванкрон с фото Ивана я все же перешлифовал и в дальнейшем протравлю в хлорном железе.

    oldTor 16-08-2013 10:57

    falcone 16-08-2013 21:07

    quote: Originally posted by Nikolay_K:

    И как Вы думаете, почему японцы


    Если вы что-то знаете,если у вас есть рецепт и лекарство от коррозиии,то расскажите его нам? Все хором скажут спасибо.

    А загатки загадывать и намёками изъясняться....

    Доктор у Вас лекарство есть?

    puphik 16-08-2013 21:38

    quote: Originally posted by Nikolay_K:

    А что такое тогда по-вашему воронение,


    Есть несколько способов, но все они заключаются во взаимодействии нагретого металла с минеральными маслами или олифами, в результате чего на поверхности металла создается пленка неких комплексных соединений, защищающих металл он коррозии. Защищает не очень хорошо. Допустим, если после охоты в дождливую погоду не обслужите вороненые стволы ружья, то уже через сутки на поверхности появится ржавчина, которая очень хорошо видна при протирании чистой белой тряпочкой. Лучший результат дает фосфатирование - создание на поверхности металла комплексных солей фосфора путем кипячения в соответствующих реактивах.
    Оксидированием углеродистые стали не защищают.

    quote: Originally posted by Nikolay_K:

    как Вы думаете, почему японцы любят оставлять куроучи (http://www.knifeforums.com/forums/showtopic.php?tid/826095/)?


    falcone 16-08-2013 21:48

    quote: Originally posted by Nikolay_K:

    рецепты вот тут:


    Можно всего один рецепт,но самый лучший и простой ,ах да и по Русски.

    Мне ооочень понравилась железка Ванкрон-40 и если ещё как то побороть коррозию,то цены этой сталюке не будет.

    Nikolay_K 16-08-2013 22:10

    quote: Originally posted by puphik:

    Анодирование - это электрохимическое оксидирование алюминия и его сплавов.

    анодируют и стали в том числе, а не только алюминий.

    Много раз встречал такое.

    Nikolay_K 16-08-2013 22:16

    quote: Originally posted by puphik:

    Простите, но не силен в ангицком и не знаю, что такое "куроучи"...

    имелось в виду то, что японцы называют 黒打仕上げ : 
    http://www.utihamono.com/info/y-kurouchi.html
    http://www.utihamono.com/houcho/li-kurouchi.html

    Nikolay_K 16-08-2013 22:19



    Можно всего один рецепт,но самый лучший и простой,ах да и по Русски.

    OK. Вот самый простой рецепт:


    И так каждый раз.

    А если заметил следы ржавчины --- так незамедлительно устраняй не дожидаясь пока она разрастётся и прожрёт дыру.

    falcone 16-08-2013 22:41

    quote: Originally posted by Nikolay_K:

    Попользовался ножом, сразу же помыл начисто, вытер насухо, помазал маслом.
    И так каждый раз.
    А если заметил следы ржавчины --- так незамедлительно устраняй не дожидаясь пока разрастётся и прожрёт дыру.


    Рецепт от ОРВИ,а случай с Ванкроном это простите Грипп


    Тоже самое происходило и с полированой ДИ-90 ,но знаачительно более растянуто во времени. Она держится значительно дольше и вдруг,в один прекрасный момент ты замечаешь микро точку..... но эта дрянь,до того как ты её заметил,росла.... как бы изнутри. Тряпочкой её опять же уже не побороть

    puphik 16-08-2013 23:40

    quote: Originally posted by Nikolay_K:

    анодируют и стали в том числе, а не только алюминий.

    Много раз встречал такое.



    Хотите поспорить?
    Вопросы терминологии самые сложные. Если коротко, то так.
    Создание на поверхности металла защитной окисной пленки называют оксидированием .
    Существует несколько методов оксидирования, таких как термическое, химическое и электрохимическое.
    Электрохимическое оксидирование , это когда изделие опускают в ванну с электролитом и пропускают постоянный ток (создают разность потенциалов определенной полярности).
    Вот если делать все то же самое с алюминиевым изделием, то это называется анодированием .

    Nikolay_K 16-08-2013 23:41

    quote: Originally posted by falcone:

    Рецепт от ОРВИ,а случай с Ванкроном это простите Грипп

    Во время 20-ти минутной чистки рыбы,на клике появляется синдромы из названия темы - питтинговая коррозия Точки глубокие и для их устранения потребуются абразивные средства....тряпочкой к сожалению не обойтись
    Не полировать же алмазной пастой после каждой операции


    Может быть можно обойтись чем-нибудь типа X15TN?
    (http://www.aubertduval.com/upl...X15TN_GB_01.pdf)

    Nikolay_K 16-08-2013 23:48

    quote: Originally posted by puphik:

    Электрохимическое оксидирование, это когда изделие опускают в ванну с электролитом и пропускают постоянный ток (создают разность потенциалов определенной полярности).
    Вот если делать все то же самое с алюминиевым изделием, то это называется анодированием.

    quote:
    Ferrous metals are commonly anodized electrolytically in nitric acid, or by treatment with red fuming nitric acid, to form hard black ferric oxide.
    This oxide remains conformal even when plated on wire and the wire is bent.


    http://www.findpatent.ru/patent/216/2163272.html

    falcone 17-08-2013 12:20

    quote: Originally posted by Nikolay_K:

    неужели для чистки и разделки рыбы так нужен Ванкрон или ДИ90?


    Если коротко,то да,нужен. Я по крайней мере уже не соскочу со злых порошков.... да и коррозийностойкие порошки типа М390-ой после того же Ванкрона,мне уже кажутся скучноватыми.
    Желание победить ржу каким либо покрытием есть большое,но если решения не найдётся,то буду пользовать ржавый злой порошок

    Nikolay_K 17-08-2013 12:54

    quote: Originally posted by falcone:

    Желание победить ржу каким либо покрытием есть большое,но если решения не найдётся

    решение давно уже есть, но оно дорогостоящее и технологически сложное

    это DLC покрытие как, например, на ROCKSTEAD

    falcone 17-08-2013 01:41

    Очень интересная штука это покрытие,но цена установки чуть смутила http://www.sstorg.ru/market/vi...=5990&id=615472 в "55 667 068,00 руб.в том числе НДС" да и крупновата она в гараж не поместится
    http://forvak.com/p/vakuumnaya...ryitiy-dlc.html
    А штука конечно интересная.

    puphik 17-08-2013 02:45

    quote: Originally posted by Nikolay_K:

    термин "анодирование" не привязан к алюнимию, он относится к любым металлам:


    Я уже упоминал, что вопросы терминологии одни из самых трудно разрешимых.
    Если судить с точки зрения русского языка, то анодирование и электрохимическое оксидирование суть один и тот же процесс. Однако, есть такое понятие, как устоявшиеся общепринятые термины. Обратите внимание на список литературы в первой ссылке (вторую ссылку рассматривать не буду, т.к. сейчас говорим о русскоязычных терминах, которые могут отличаться от иностранных), то увидите, что термин "анодирование" идет в контексте с алюминием.
    Если Вы считаете, что анодирование и электрохимическое оксидирование
    синонимы - это Ваше право. Это только терминология, суть процессов от этого не меняется. А главное, чтобы Вы правильно поняли суть процесса: создание на поверхности металла защитной окисной пленки электрохимическим методом.
    quote: Originally posted by Nikolay_K:

    А вот пример применения термина анодирование к стали в русскоязычной литературе:
    http://www.findpatent.ru/patent/216/2163272.html


    Это пример современной безграмотности. Посудите сами, если анодирование - это создание защитной окисной пленки на поверхности металла, то оно не может работать на углеродистой стали, т.к. железо не образует сплошной окисной пленки, отгораживающей металл он воздействия среды. Пористая получается пленка. В изобретении описан совершенно другой процесс, не имеющий к электрохимическому оксидированию (анодированию) никакого отношения. Просто автор позволил себе использовать этот термин. Также как Вы позволили себе использовать термин "питтинг" для коррозионного поражения Вашего ножа.
    К сожалению, научный уровень статей в Википедии частенько желает быть лучшим.

    Русский самурай 17-08-2013 03:16

    А почему бы не хромировать клинки?

    anakhoret 17-08-2013 08:42

    Русский самурай 17-08-2013 09:09

    quote: Originally posted by anakhoret:

    и РК?Там подложка медная идёт...толщина приличная получиццо)


    на чем медная подложка? Под хромом? Нет там подложки. Под никелем - может быть и есть. Но с никелем не сталкивался. А с хромом - все ножи из коррозирующей стали, что я продаю - все в хроме с недавнего времени. И Ванадис, и быстрорезы, и Хашки. Надо будет вытащить на Ганзу несколько ножей на продажу, все руки не доходят..ибо и так спрос большой. А зачем хромировать РК? ее же точить надоть))

    puphik 17-08-2013 10:24

    quote: Originally posted by Русский самурай:
    А почему бы не хромировать клинки?

    Хромируют иногда (есть у меня такой клиночек), но это не решает проблемы.
    quote: Originally posted by Русский самурай:
    А зачем хромировать РК? ее же точить надоть))

    В этом случае образуется гальваническая пара, в которой режущая кромка является анодом и корродирует гораздо быстрее, чем если бы хромирования не было. Все равно за ножом нужно ухаживать так же, как и за углеродкой без покрытия.

    oldTor 17-08-2013 11:38

    Фаски, образующие РК на углеродке полезно доводить почище, ради лучшего предохранения от ржавления, т.к. более гладкая поверхность, которую к тому же гораздо проще очистить как следует после использования, показывает лучшую устойчивость. Если при этом не хватает агрессии реза, то крупные рисочки наносятся уже после тщательной доводки. Такой способ очень и очень неплохо работает.

    Коррозией называют разрушение поверхности материалов в результате активно проходящих окислительно-восстановительных процессов. Разрушение слоев материала приводит к снижению прочности, электрической проводимости, повышению хрупкости и угнетению других свойств металла.

    В процессе эксплуатации металлических изделий они подвергаются разрушающим воздействиям различных видов и типов, среди которых выделяется питтинговая коррозия. Она наиболее опасная и непредсказуемая.

    Питтинговая коррозия

    На поверхности металлических изделий довольно часто можно заметить небольшие углубления, точки бурого или коричневого цвета. Такие точки ученые называют питтингами, а процесс их появления - питтинговой коррозией. Она возникает на поверхности материалов, контактирующих с морской водой, растворами различных солей, химически агрессивными средами и воспринимающих другие негативные факторы.

    Питтинговая коррозия поражает только пассивные металлы и сплавы, развивается преимущественно в антикоррозионном слое или по местам разнообразных дефектов. «Точечные язвы» могут нарушать работу различных изделий: от тонких мембран и микросхем, до толстостенных агрегатов. Кроме того, их появление способствует образованию коррозионных трещин, существенно снижающих заданные характеристики материала.

    Схема разрушения металла

    Для активации питтинговой коррозии необходимо присутствие двух реагентов - активаторов и пассиваторов. В качестве активаторов чаще всего выступают анионы хлора, брома, йода - они содержатся в большинстве сред, в которых эксплуатируются металлические изделия. Они адсорбируются на поверхности металла и образуют с его компонентами растворимые комплексы.

    В качестве пассиваторов чаще всего выступает вода или гидроксильная группа. Непосредственно процесс разрушения протекает по следующей схеме:

    1. Ионы-активаторы адсорбируются на поверхности защитной (оксидной) пленки.
    2. Происходит процесс замещения ионов кислорода на ионы активатора процесса.
    3. Образуется большое количество растворимых ионов, в результате чего пленка разрушается.

    В результате этого возникает разность потенциалов на поверхности материала, что ведет к появлению локальных токов, активизируется бурный анодный процесс. Ионы-активаторы при этом перемещаются к очагам разрушения, из-за чего питтинговая коррозия прогрессирует.

    Разновидности питтинговой коррозии

    Вид питтинговой коррозии варьируется в зависимости от окружающих условий, главным образом от температуры, кислотности, химического состава веществ. Под действием этих факторов меняется форма, размер питтингов и их расположение. Так, согласно размеру выделяют точечное разрушение:

    • микроскопическое - размер точек менее 0,1 мм;
    • обычное - диаметр питтингов варьируется от 0,1 до 1 мм;
    • язвенное, когда образования превышают 1 мм в диаметре.

    В зависимости от расположения питтинговая коррозия может быть открытого или закрытого типа. В первом случае обнаружить следы разрушения практически невозможно - необходимо применение специальных приборов. Этот вид коррозии очень часто ведет к появлению пробоев.

    Открытое ржавление заметно невооруженным взглядом. Нередко питтинги сливаются в единое образование. При этом разрушение материала происходит не вглубь, а в ширину, из-за чего возникают большие по площади дефекты.

    Форма питтингов

    Форма питтингов зависит от пустот внутри кристаллической решетки, которые образуются на первых этапах коррозионного процесса. Чаще всего встречаются образования неправильной формы - они возникают на поверхности нержавеющей, низколегированной и углеродистой сталей, алюминиевых, хромовых, никелевых сплавов, железа.

    Полусферические язвы образуются в результате изотропного растворения. Этот процесс схож с электрополировкой. Отчасти этим и объясняется блестящее дно полукруглых углублений. Наиболее подвержены подобному разрушению титановые, алюминиевые, никелевые и кобальтовые изделия, а также конструкции из тантала. Приблизительно такой же вид имеет питтинговая коррозия

    Кроме того, питтинги могут быть полиэдрическими и ограненными. «Язвы» последнего типа очень часто объединяются друг с другом, что приводит к возникновению крупных полусферических разрушений.

    Причины появления

    Основными причинами появления питтинговой коррозии являются нарушение технологии производства и механическое воздействие на материал. В результате нарушения технологии отливки в металле появляются разнообразные микровключения, которые нарушают его структуру. Наиболее распространенным включением можно назвать прокатную окалину.

    Из-за механического воздействия очень часто на поверхности изделий начинает развиваться питтинговая коррозия. Причины этого кроются в разрушении верхней защитной пленки, нарушении внутренней структуры, выходе на поверхность границ зерен. Наиболее распространенным активизирующим процесс фактором можно назвать динамическое воздействие, что ведет к появлению микротрещин.

    Питтинговая развивается быстрее на шероховатых поверхностях, а также под воздействием агрессивных сред - морской воды, кислотных растворов.

    Методы защиты металла от питтинговой коррозии

    Для защиты металлических изделий от питтинговой коррозии используют три основных способа:

    1. Ликвидация замкнутых систем при помощи растворов щелочных соединений, сульфатов, хроматов.
    2. Введение в состав материала компонентов с высокой сопротивляемостью точечному ржавлению - молибдена, хрома, кремния.
    3. Использование катодной и анодной технологии создания защитного слоя.

    Все представленные методы защиты металлов от коррозии применимы лишь на производстве, ибо требуют высокотехнологичного оборудования и больших капиталовложений. В быту же полностью исключить риск появления питтингов невозможно. Удается лишь ослабить влияние негативно действующих факторов посредством:

    • нанесения ;
    • улучшения условий эксплуатации изделий;
    • снижения уровня кислотности среды, с которой соприкасается материал.

    Но самым действенным и доступным методом является тщательная полировка: уменьшая вы одновременно повышаете ее антикоррозионную стойкость. Но для лучшего эффекта лучше использовать все методы защиты металлов от коррозии одновременно.

    Как и все металлы, нержавеющие стали в некоторых случаях могут подвергаться коррозии равномерно по всей поверхности. Если среда не обладает значительными окислительными свойствами, защитная пленка на поверхности металла может в конце концов исчезнуть, что приводит к общей коррозии (неустойчивая пассивность). Более того, состояние поверхности металла влияет на природу его пассивности; коррозионная стойкость максимальна, если поверхность металла не загрязнена частицами железа или различными отложениями.

    Межкристаллитная коррозия

    Межкристаллитная коррозия нержавеющей стали происходит в основном возле сварных швов. Она может возникнуть также в результате горячей штамповки или термической обработки металла. Это явление обусловлено локальным снижением содержания хрома при анодном растворении карбида хрома, который выделяется по границам зерен возле сварных швов при температурах 400-800 °С. В кислой среде сцепление зерен при этом нарушается и металл становится хрупким.

    Развитие межкристаллитной коррозии, которая характерна для аустенитных сталей, можно предотвратить двумя способами: снижением содержания углерода в стали до 0,03% (чтобы ограничить образование карбида хрома) и применением стали, стабилизированной ниобием или титаном, которые с углеродом образуют устойчивые карбиды.

    Питтинг

    Растворенный кислород обычно способствует пассивации нержавеющей стали за исключением случаев, когда происходит питтинговая коррозия (при наличии в среде хлоридов и бромидов. Этот очень распространенный и очень опасный вид коррозии приводит к образованию сквозных изъязвлений, которые могут быть почти невидимы на поверхности. Вероятность питтинговой коррозии нержавеющей стали под действием растворов, содержащих хлориды, возрастает с увеличением количества воздуха в растворе. Молибденсодержащие нержавеющие стали с высоким содержанием хрома и низким содержанием углерода (например, Z2CND13) относительно стойки к этому виду коррозии.

    Общие закономерности возникновения питтинговой коррозии трудно установить, так как они зависят от многих факторов: pH среды, концентрации кислорода, температуры, солесодержа-ния, количества взвешенных веществ и т. д. В некоторых случаях для предотвращения питтинговой коррозии могут быть применены высокосортные сплавы, такие как уранус (Uranus).

    Язвенная коррозия

    Существует очень мало металлов, не подвергающихся этой разновидности коррозии. Она развивается в застойных зонах, где затруднена или полностью отсутствует диффузия кислорода. Особенно часто язвенная коррозия обнаруживается под слоем отложений, оксидов, биологических обрастаний, под неметаллическими, негерметичными соединениями и т. д.

    Язвенная коррозия нержавеющих сталей представляет собой сложный процесс. Он инициируется дифференциальной аэрацией, ведущей к образованию маленьких ячеек, в которых удерживаются продукты коррозии. Если коррозионной средой является, например, вода, содержащая кислород, которая практически нейтральна, но содержит хлориды, гидролиз первичных продуктов коррозии в ячейках приведет к образованию соляной кислоты, которая, достигнув некоторой критической концентрации, вызовет развитие язвенной коррозии. Поэтому язвенная коррозия характеризуется инкубационным периодом, который может продолжаться несколько месяцев. Но если процесс коррозии начался, он развивается очень быстро. В таких случаях коррозия усиливается образованием локальных электрохимических элементов между пассивным и активным металлом, которые быстро разрушают пассивирующую пленку.

    Если продукты коррозии смываются водой во время инкубационного периода, процесс язвенной коррозии прекращается полностью.

    Наличие никеля и молибдена в стали увеличивает продолжительность инкубационного периода и, таким образом, повышается бероятность того, что процесс будет приостановлен на этот период. Однако, если инкубационный период закончился и начался процесс язвенной коррозии, его скорость для стали с высоким содержанием никеля и молибдена будет столь же велика, как и для стали с меньшим содержанием этих компонентов.

    Чтобы предотвратить возникновение язвенной коррозии, необходимо исключить условия, которые способствуют развитию дифференциальной аэрации. Для этой цели должны быть исключены все изменения концентрации кислорода в среде. Однако было бы неправильно предполагать, что путем насыщения среды кислородом и перемешиванием можно добиться состояния насыщения кислородом в трудно доступных зонах.

    Для предотвращения образования отложений следует поддерживать достаточно высокие скорости движения воды, если возможно более 3 м/с, а сооружения должны быть запроектированы таким образом, чтобы при эксплуатации не возникали застойные зоны. Если это не удается осуществить, следует предусмотреть возможность периодического дренирования и очистки таких зон.

    Коррозия под напряжением

    Коррозия под напряжением может происходить в аустенитных сталях, подвергающихся механическим напряжениям, которые или являются остаточными после предварительной обработки (штамповки, сварки), или возникают в процессе эксплуатации. Коррозия под напряжением может развиваться и в некоррозионной среде, но активизируется в присутствии горячих растворов хлоридов щелочных или щелочноземельных металлов. После инкубационного периода различной продолжительности коррозия под напряжением проявляется в виде быстро распространяющихся глубоких трещин.


    Чтобы предотвратить развитие коррозии под напряжением , в некоторых случаях необходимо снять напряжения соответствующей термической обработкой.

    Специальные виды коррозии нержавеющей стали

    Как и при коррозий обычной стали, высокая скорость потока коррозионной жидкости может помешать образованию пассивирующей пленки и в результате будет развиваться локальная коррозия. Защитная пленка также может быть разрушена механическим абразивным воздействием твердых частиц, находящихся в жидкости.

    Коррозия, вызванная образованием микропар, возникает в местах соединений различных металлов, например, в местах сварки между нержавеющей и мягкой сталью. В этом случае мягкая сталь становится анодом по отношению к нержавеющей стали и подвергается коррозии. С другой стороны, такое соединение может предотвратить питтинговую или язвенную коррозию нержавеющей стали 18-10 Мо.

    Процесс холодной штамповки может привести к образовав нию механически упрочненного мартенсита, который является анодом по отношению к аустениту, составляющему остальную структуру, и поэтому становится преобладающей зоной коррозии. Этого явления можно избежать, используя низкоуглеродистые стали с высоким содержанием никеля, в которых аустениты очень стабильны.

    Министерство образования и науки Российской Федерации

    Федеральное государственное бюджетное образовательное учреждение

    высшего профессионального образования

    «Магнитогорский государственный технический университет

    им. Г. И. Носова»

    (ФГБОУ ВПО «МГТУ»)

    По дисциплине: «Защита металлов от коррозии»

    На тему: «Межкристаллитная коррозия. «Ножевая» коррозия. Коррозионное

    растрескивание. Язвенная и точечная коррозии»

    Выполнили: ст. гр. ТФБ-11 Иванова К. С.,

    Пешкова А. А.

    Проверила: Пыхтунова С.В.

    Магнитогорск, 2013

      Межкристаллитная коррозия 3

      «Ножевая» коррозия 5

      Коррозионное растрескивание 6

      Язвенная коррозия 8

      Питтинговая (точечная) коррозия 9

    Список литературы 12

      Межкристаллитная коррозия.

    Межкристаллитная коррозия (МКК) – один из видов местной коррозии металла, который приводит к избирательному разрушению границ зерна. Межкристаллитная коррозия – очень опасный вид разрушения, т.к. визуально ее не всегда можно определить. Металл теряет свою пластичность и прочность.

    Межкристаллитной коррозии чаще всего подвергаются металлы и сплавы, которые легко становятся пассивными. К ним относятся хромоникелевые и хромистые сплавы (нержавеющие стали), сплавы алюминия, никеля, некоторые другие.

    Рис. 1. Межкристаллитная коррозия

    Причина возникновения межкристаллитной коррозии: структурные превращения на границах зерен металла. Зона структурных превращений становится анодом, который усиленно растворяется. Связь между зернами металла нарушается и происходит их выкрашивание. Вследствии этих процессов металлические конструкции при эксплуатации теряют свои свойства и быстро приходят в негодность.

    Факторы межкристаллитной коррозии (МКК):

    1) Состав сплава;

    2) Температура;

    3) Время выдержки при повышенных температурах;

    Скорость протекания межкристаллитной коррозии определяется потенциалом металла. Ускоренное ее развитие наблюдается при потенциалах входа в транспассивную область (1,15 – 1,25В), а также при потенциале активно-пассивного перехода (около 0,35В). В разных областях межкристаллитная коррозия может протекать по разным механизмам.

    Рис. 2 . Межкристаллитная коррозии:

    а- микроструктура металла до коррозии; б- микроструктура на стадии коррозии, образование трещин по границам металла.

      «Ножевая» коррозия.

    Рис. 3. «Ножевая» коррозия.

    « Ножевая» коррозия – разновидность межкристаллитной коррозии (МКК). Ножевая коррозия – местное разрушение, которое наблюдается на сварных швах. Протекает в узкой зоне, на границе основной металл - сварной шов. Ножевой коррозии подвержены многослойные сварные швы высокоуглеродистых хромоникелевых сталей, стабилизированные титаном стали, которые эксплуатируются в азотной кислоте. Даже стали с большим содержанием молибдена.

    При сварке почти расплавленный металл (с температурой около 1300 ο С) контактирует с холодным. В расплавленном металле растворяются карбиды хрома или титана, а при его охлаждении не успевают выделится новые карбиды. При этом углерод остается в твердом растворе. Из-за достаточно медленного охлаждения выпадает большое количество карбидов Cr. В агрессивных средах происходит постепенное растворение (на межкристаллитном уровне) узкой зоны возле сварного шва.

    Предотвращение ножевой коррозии:

    Применять только низкоуглеродистые хромоникелевые стали;

    Избегать «опасных» температур околошовной зоны;

    Использовать стабилизирующий отжиг при температурах 870 – 1150 ο С (карбиды Cr переходят в твердый раствор).

      Коррозионное растрескивание.

    Коррозионное растрескивание металлов – это один из видов коррозионных разрушений (коррозии), при котором в металле зарождается и развивается множество трещин. Возникает коррозионное растрескивание при одновременном воздействии на металл агрессивной коррозионной среды и растягивающих напряжений. Характерной особенностью коррозионного растрескивания является практически полное отсутствие пластической деформации металлического изделия.

    Коррозионное растрескивание – очень опасный вид разрушения металла, т.к. не всегда его можно вовремя заметить. Чаще всего коррозионному растрескиванию подвергаются металлы, в которых после механической или термической обработки присутствуют остаточные напряжения. Также металлические изделия, эксплуатируемые при повышенных температурах и давлениях. Встречается коррозионное растрескивание при сварке, сборке или монтаже металлических деталей и т.п.

    Рис. 4. Коррозионное растрескивание.

    Коррозионному растрескиванию могут подвергаться все металлы и сплавы, которые находятся в напряженном состоянии. Большое влияние на интенсивность коррозионного растрескивания оказывает коррозионная среда (ее характер, состав и концентрация агрессивных агентов).

    В теплоэнергетической, химической и нефтегазовой отраслях 20 – 40% всех коррозионных разрушений приходится именно на коррозионное растрескивание.

    Особенности коррозионного разрушения металлов:

    Существует возможность возникновения транскристаллитных и межкристаллитных трещин с разветвлениями;

    Металл с появлением трещин охрупчивается;

    От величины приложенных растягивающих напряжений зависит время до начала образования трещины (индукционный период).

    Коррозионное растрескивание сталей наблюдается в растворах, которые содержат кислоты, хлориды, щелочи, нитраты, H 2 S, CO 2 , NH 3 . Менее склонны к коррозионному растрескиванию углеродистые стали с перлитной или перлитно-ферритной структурой, содержащие в своем составе более 0,2% углерода. Мартенситная структура стали является самой чувствительной к данному виду коррозии, т.к. все режимы термообработки, в результате которых образуется мартенсит, делают сталь склонной к коррозионному растрескиванию.

    Хромоникелевые аустенитные стали более подвержены коррозионному растрескиванию, чем ферритные и полуферритные хромистые стали. В нержавеющих сталях аустенит не обладает достаточной стабильностью и в условиях химических предприятий достаточно часто встречается коррозионное растрескивание аустенитных хромоникелевых сталей. Введение стабилизаторов, легирующих компонентов, увеличение содержания никеля не оказывает существенного воздействия на склонность аустенитных сталей к коррозионному воздействию.

    Коррозионному растрескиванию подвержены не только черные металлы и сплавы, а и цветные (например, медноцинковые и алюминиевомагниевые сплавы). В присутствии паров аммиака быстро корродируют с коррозионным растрескиванием сплавы меди с оловом, цинком и алюминием. А в растворах карбонатов, хлоридов, сульфатов и хроматов разрушаются магниевые сплавы, которые находятся в напряженном состоянии.

      Язвенная коррозия.

    Язвенная коррозия - это форма локального поражения, результатом которой являются поры в металле. Эти поры могут быть как малого, так и большого диаметра, но чаще всего они относительно малы. Они могут быть причиной сквозного прободения металла или сплава. Часто поры изолированы либо расположены так близко друг к другу, что выглядят как шероховатость поверхности. В общем, поры можно представить как отверстия или каверны, диаметр которых равен или меньше их длины. Питтинг это одна из наиболее коварных форм коррозии. Он приводит к разрушению оборудования вследствие сквозного прободения при очень незначительной потере общего веса всей конструкции.

    Язвенная коррозия часто развивается в местах пор или поврежденных участков:

    Непроводящего слоя металлической поверхности (окисной пленки);

    Металлического покрытия поверхности, которое является более благородным по отношению к основному металлу. Это может инициировать питтинг на основном металле

    Язвенная коррозия часто наблюдается у нержавеющих стальных сплавов. На развитие коррозии влияют такие факторы, как температура и движение среды.

    Рис. 6. Язвенная коррозия.

      Питтинговая (точечная) коррозия.

    Питтинговая (точечная) коррозия – вид коррозионного разрушения, которому подвергаются исключительно пассивные металлы и сплавы. Питтинговая коррозия наблюдается у никелевых, циркониевых, хромоникелевых, хромистых, алюминиевых сплавах и др.

    При питтинговой (точечной) коррозии разрушению подвергаются только отдельные участки поверхности, на которых образуются глубокие поражения – питтинги (точечные язвы).

    Наблюдается питтинговая коррозия при воздействии на металл или сплав не только пассиваторов (приводят поверхность в пассивное состояние, например, окислитель), но и ионов-активаторов (Cl-, Br-, J-). Активно

    протекает питтинговая (точечная) коррозия в морской воде, смеси азотной и соляной кислот, растворах хлорного железа, других агрессивных средах.

    По размерам питтинги различают:

    Микропиттинги (до 0,1 мм);

    Питтинги (0,1 – 1мм);

    Пятно, язва (более 1 мм).

    Питтинг может быть: закрытым, открытым и поверхностным.

    Открытые питтинги - хорошо видны на поверхности невооруженным глазом или под небольшим увеличением. Если открытых питтингов очень много – коррозия приобретает сплошной характер. В открытом питтинге дно поры выступает в качестве анода, а пассивная пленка – катода.

    Закрытые питтинги – очень опасный вид коррозионного разрушения, т.к., такие повреждения нельзя увидеть воочию, определить их наличие можно лишь по специальным приборам. Закрытые питтинги развиваются вглубь металла или сплава. Закрытый питтинг может послужить причиной пробоя даже в нержавеющих сталях.

    Поверхностный питтинг – вид питтинга, который развивается больше вширь, чем вглубь, образуя на поверхности металла или сплава выбоины.

    Этапы роста питтинга:

    1) Зарождение питтинга происходит в местах дефектов пассивной пленки (царапины, разрывы) или ее слабых местах (если имеет место неоднородность сплава) при достижении определенного потенциала - потенциала питтингообразования (φпо). Ионы-активаторы вытесняют адсорбированный на поверхности кислород или при взаимодействии разрушают оксидную защитную пленку.

    2) Рост питтинга – происходит по электрохимическому механизму, вследствии интенсивного растворения пассивной оксидной пленки. Из-за активного растворения пленки происходит усиление анодного процесса в самом питтинге (активационный рост питтинга). Со временем, когда питтинг будет достаточно расширен, активационный рост замедляется, начинается диффузионный режим роста питтинга.

    3) Иногда рост питтинга прекращается и наступает стадия репассивации. Основной причиной репассивации можно считать сдвиг потенциала поверхности в отрицательную сторону, т.е. сторону пассивации. Питтинг с диффузионным режимом роста (постепенно, стабильно растущий питтинг) не может перейти в стадию репассивации.

    Склонность к питтинговой коррозии определяется некоторыми факторами:

    Природой металла или сплава (склоны к образованию питтингов алюминий, никель, цинк; молибден, хром, кремний и др. питтингообразованию не подвергаются);

    Температурой (с повышением температуры растет количество питтингов);

    Состоянием поверхности (хорошо отполированная поверхность более стойкая, чем шероховатая);

    РН среды (чаще возникают питтинги в кислых средах);

    Примесями в среде (наличием ионов-активаторов).

    Защита металлов и сплавов от питтинговой (точечной) коррозии осуществляется следующими методами:

    1) Электрохимическая катодная и анодная защита (иногда вместе с ингибиторами);

    2) Подбор специальных материалов, которые не подвергаются питтинговой (точечной) коррозии. Повышению стойкости способствуют введение в состав сплава хрома, молибдена, кремния и др. стойких металлов.

    3) Ингибирование замкнутых систем (применение нитратов, щелочей, хроматов, сульфатов).

    Рис. 7. Питтинговая (точечная) коррозия.

    Список литературы:

    1. Краткая химическая энциклопедия под редакцией И.А. Кнуянц и др. - М.: Советская энциклопедия, 1961-1967, Т.2.

    2. Советский энциклопедический словарь. - М.: Советская энциклопедия, 1983.

    3. Андреев И.Н. Коррозия металлов и их защита. - Казань: Татарское книжное издательство, 1979.

    4. Войтович В.А., Мокеева Л.Н. Биологическая коррозия. - М.: Знание, 1980, № 10.