Войти
Идеи для бизнеса. Займы. Дополнительный заработок
  • Зачем нужно штатное расписание и как его составить
  • Растаможка перевозимых грузов — правила и условия
  • Боремся с пухопероедами у курочек Как обработать кур керосином и нашатырным спиртом
  • История создания старуха изергиль максима горького презентация
  • Конвенции Международной организации труда (МОТ) в регулировании трудовых отношений Конвенция мот трудовые отношения
  • Как керосин стал лекарством и стоит ли его применять
  • Компьютеризированные интегрированные производства. Концептуальная модель распределенного управления параллельными операциями. Обязанности и требования

    Компьютеризированные интегрированные производства. Концептуальная модель распределенного управления параллельными операциями. Обязанности и требования

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    1. CALS ехнологии как основа современного производства

    Современная промышленность все больше переходит на выпуск продукции индивидуально под конкретную группу потребителей. Стремление к индивидуальному удовлетворению конкретного клиента требует производств, имеющих гибкую структуру бизнес-процессов, что вызывает к жизни новые подходы, концепции и методологии. Одна из таких концепций, CALS (Continuous Acquisition and Life cycle Support), превратилась сегодня в целое направление информационных технологий.

    Жизненный цикл изделия - совокупность этапов или последовательность бизнес-процессов, через которые проходит это изделие за время своего существования: маркетинговые исследования, составление технического задания, проектирование, технологическая подготовка производства, изготовление, поставка, эксплуатация, утилизация. Идеология CALS состоит в отображении реальных бизнес-процессов на виртуальную информационную среду, где эти процессы реализуются в виде компьютерных систем, а информация существует только в электронном виде.

    2. Основные термины, структура КСПИ

    Необходимо, прежде всего, ввести русскоязычный термин, адекватно отражающий суть подхода CALS - Компьютерное Сопровождение Процессов жизненного цикла Изделий (КСПИ). Можно выделить три основных аспекта данной концепции:

    Компьютерная автоматизация, повышающая производительность основных процессов и операций создания информации;

    Информационная интеграция процессов, т.е. совместное и многократное использование одних и тех же данных. Интеграция достигается минимизацией числа и сложности вспомогательных процессов и операций поиска, преобразования и передачи информации. Один из инструментов интеграции - стандартизация способов и технологий представления данных, благодаря которой результаты предшествующего процесса могут быть использованы в последующих процессах с минимальными преобразованиями;

    Переход к безбумажной модели организации бизнес-процессов, многократно ускоряющей доставку документов, обеспечивающей параллелизм обсуждения, контроля и утверждения результатов работы, сокращающей длительность бизнес-процессов. В этом случае ключевое значение приобретает электронно-цифровая подпись (ЭЦП).

    Применение технологий КСПИ возможно, если выполнены следующие условия:

    Наличие современной инфраструктуры передачи данных;

    Введение понятия электронного документа, как полноценного объекта производственно-хозяйственной деятельности и обеспечение его легитимности;

    Наличие средств и технологий ЭЦП и защиты данных;

    Реформирование бизнес-процессов с учетом новых возможностей информационных технологий;

    Создание системы стандартов, дополняющих или заменяющих традиционные ЕСКД, ЕСТД, ЕСПЛ, СРПП и т.п.;

    Наличие на рынке программных средств и компьютерных систем, соответствующих требованиям стандартов.

    В составе КСПИ можно выделить два крупных блока (рис. 1):

    Компьютеризированное интегрированное производство и система логистической поддержки изделия.

    К первому относятся:

    Системы автоматизированного проектирования (САПР-К или CAD), инженерного анализа и расчетов (СИАР или CAE) и технологической подготовки производства (САПР-Т или CAM);

    Системы автоматизированной разработки эксплуатационной документации (Electronic Technical Publication Development - ETPD);

    Системы управления данными об изделиях (Product Data Management - PDM);

    Системы управления проектами и программами (Project Management - РМ);

    Автоматизированные системы управления производственно-хозяйственной деятельности предприятия (АСУП).

    Система интегрированной логистической поддержки (ИЛП) изделия, предназначенная для информационного сопровождения бизнес-процессов на постпроизводственных стадиях жизненного цикла - относительно новый элемент производственной и управленческой структуры для предприятий России. ИЛП представляет собой совокупность процессов, организационно-технических мероприятий и регламентов, осуществляемых на всех стадиях жизненного цикла изделия от его разработки до утилизации. Цель внедрения ИЛП - сокращение «затрат на владение изделием», которые для сложного наукоемкого изделия равны или превышают затраты на его закупку.

    Типовой перечень задач ИЛП включает в себя :

    Логистический анализ на стадии проектирования (Logistics Support Analysis), предусматривающий определение требований к готовности изделия; определение затрат и ресурсов, необходимых для поддержания изделия в нужном состоянии; создание баз данных для отслеживания перечисленных параметров в ходе жизненного цикла изделия;

    Создание электронной технической документации для закупки, поставки, ввода в действие, эксплуатации, обслуживания и ремонта изделия;

    Создание и ведение «электронных досье» на эксплуатируемые изделия, с целью накопления и использования фактических данных для оперативного определения реального объема работ по обслуживанию и потребности в материальных ресурсах;

    Применение стандартизованных процессов поставки изделий и средств материально-технического обеспечения, создание компьютерных систем информационной поддержки этих процессов (Integrated Supply Support Procedures);

    Применение стандартизованных решений по кодификации изделий и предметов снабжения (Codification). В условиях России эта задача имеет более широкий смысл и трактуется как задача каталогизации - создание федерального реестра предметов снабжения, поставляемых для государственных нужд. Цель создания реестра - оптимизация госзаказа, в том числе исключение дублирования производства функционально и конструктивно эквивалентных предметов снабжения. В ходе каталогизации получают коды, используемые для их идентификации в процессах материально-технического снабжения; - создание и применение компьютерных систем планирования потребностей в средствах материально-технического обеспечения, формирования заявок (Order Administration) и управления контрактами (Invoicing) на поставку средств материально-технического обеспечения.

    Рис. 1. Структура КСПИ

    3. Виртуальное предприятие

    Развитие КСПИ и обусловило появление новой организационной формы выполнения масштабных наукоемких проектов, связанных с разработкой, производством и эксплуатацией сложной продукции - так называемого «виртуального предприятия». Виртуальное предприятие создается посредством объединения на контрактной основе предприятий и организаций, участвующих в жизненном цикле продукции и связанных общими бизнес-процессами. Информационное взаимодействие участников виртуального предприятия осуществляется на основе общих хранилищ данных через общую корпоративную или глобальную сеть. Срок жизни виртуального предприятия определяется длительностью проекта или жизненного цикла продукции. Задача информационного взаимодействия особенно актуальна для временно создаваемых виртуальных предприятий, состоящих из географически удаленных друг от друга подрядчиков, субподрядчиков, поставщиков с разнородными компьютерными платформами и программными решениями.

    Создание виртуальных предприятий требует проработки общей схемы совместного функционирования и взаимодействия составных частей. Это выводит на первый план вопросы проектирования, анализа и, при необходимости, реинжиниринга внутренних и совместных бизнес-процессов, юридического взаимодействия и интеллектуальной собственности.

    Информацию, используемую в ходе жизненного цикла, можно условно разделить на три класса: о продукции, о выполняемых процессах и о среде, в которой эти процессы выполняются. На каждой стадии создается набор данных, который используется на последующих стадиях. При наличии бумажной копии документа его подпись не вызывает никаких проблем, но в данном случае, когда сообщение идет полностью с помощью компьютера, появляется еще одна проблема - как заверять все необходимые документы. То есть практическая организация безбумажных бизнес-процессов возможна только при обеспечении легитимности электронного документа, заверенного ЭЦП. Техническим комитетом 431 «CALS-технологии» Госстандарта РФ в настоящее время разрабатывается проект соответствующего ГОСТа, в кагором электронный технический документ трактуется как «оформленная надлежащим образом в установленном порядке и зафиксированная на машинном носителе техническая информация, которая может быть представлена в форме, пригодной для ее восприятия человеком». Электронный технический документ логически состоит из двух частей: содержательной и реквизитной. Первая представляет собой собственно информацию, а вторая содержит аутентификационные и идентификационные данные электронного технического документа, в том числе набор обязательных атрибутов, одну или несколько электронно-цифровых подписей (рис. 2).

    Рис. 2. Структура электронного технического документа

    ЭЦП представляет собой набор знаков, генерируемый по алгоритму, определенному ГОСТ Р 34.0-94 и ГОСТ Р 34. - 94. ЭЦП является функцией от содержимого, подписываемого электронного технического документа и секретного ключа. Секретный ключ (код) имеется у каждого субъекта, имеющего право подписи и может храниться на дискете или смарт-карте. Второй ключ (открытый) используется получателями документа для проверки подлинности ЭЦП. При помощи ЭЦП можно подписывать отдельные файлы или фрагменты баз данных. В последнем случае программное обеспечение, реализующее ЭЦП, должно встраиваться в прикладные автоматизированные системы.

    Примером базового средства, реализующего основные функции ЭЦП, является система «Верба», сертифицированная ФАПСИ.

    4. Стандарты

    Данные об изделии занимают значительную часть общего объема информации, используемой в ходе жизненного цикла. На их основе решаются задачи производства, материально-технического снабжения, сбыта, эксплуатации, ремонта и др. Информационная интеграция этих процессов и совместное использование данных обеспечиваются применением соответствующих стандартов. Представление конструкторско-технологических данных об изделии регламентируется стандартами серии ISO 10303 и ISO 13584 . В 1999-2000 годах Госстандартом РФ выпущена серия ГОСТ Р ИСО 10303, представляющая собой аутентичный перевод некоторых стандартов ISO 10303 , который поддерживается большинством современных зарубежных и отечественных систем CAD/САМ и PDM.

    В соответствии с ISO 10303 электронная конструкторская модель изделия включает ряд компонентов:

    1) Геометрические данные (твердотельные поверхности с топологией, фасеточные поверхности, сетчатые поверхности с топологией и без топологии, чертежи и т.п.).

    2) Информация о конфигурации изделия и административные данные (идентификаторы страны, отрасли, предприятия, проекта, классификационные признаки и т.п., данные о вариантах состава и структуры изделия; данные об изменениях конструкции и информацию о документировании этих изменений; данные для контроля различных аспектов проекта или решения вопросов, связанных с особенностями и вариантами состава и конфигурации изделия; данные о контрактах, в соответствии с которыми ведется проектирование; сведения о секретности; условия обработки, в том числе финишной, данные о применяемости материалов, указанные проектировщиком для данного изделия; данные для контроля и учета выпущенной версии разработки; идентификаторы поставщиков и их квалификации).

    3) Инженерные данные в неструктурированной форме, подготовленные с помощью различных программных систем в различных форматах.

    Некоторые части стандарта ISO 10303 используются в качестве готовой модели данных для системы PDM (например, ISO 10303-203), а другие описывают конкретную технологию представления данных для информационного обмена между предприятиями (ISO 10303-21).

    Для представления информации, необходимой при эксплуатации и техническом обслуживании изделия, используются технологии, регламентируемые стандартами ISO 8879 (Standard Generalized Markup Language), ISO 10744 (HyTime), а также спецификациями ассоциаций производителей аэрокосмической техники AECMA-1000D и АЕСМА-2000М (www. aecma.org).

    В соответствие с требованиями стандартов эксплуатационная и ремонтная документация создается в форме интерактивных электронных технических руководств, интегрирующих данные и программные средства поддержки обслуживания, планирования потребностей в материальных ресурсах, контроля и диагностики, накопления данных о ходе эксплуатации.

    5 . Экспорт промышленного бизнеса

    Для владельцев бизнес инициативы - обладателей интеллектуальной собственности на производство с применением данной торговой марки, продаваемым товаром стала не только сама продукция, но и право на ее производство, как правило, ограниченное сроками или объемом выпуска. Оно подразумевает возможность экспорта лицензионного производства на удаленные территории, где имеются для этого благоприятные экономические условия.

    Раньше было достаточно снабдить удаленное предприятие оборудованием, инструкциями и ресурсами, но сегодня возникла необходимость не просто копировать продукт, а поддерживать еще ряд его модификаций, оптимизированных под местный рынок. Разработка, подготовка производства, изготовление и поддержка адаптированного продукта все более возлагаются на региональное предприятие. Чтобы полноценно обеспечить его такой возможностью, хозяин торговой марки должен «экспортировать» самодостаточную модель бизнес процесса, со всеми его составляющими, только в уменьшенном масштабе. Для этого сами бизнес процессы должны быть хорошо формализованы и масштабируемы. В таком виде они представляют собой более дорогой вил интеллектуальной собственности, потому что для этого должна быть лучше развита среда его существования - информационные технологии. Это серьезный вызов для разработчиков информационных технологий.

    6. Средства описания и анализа

    Внедрение технологий КСПИ и создание интегрированной информационной системы на промышленном предприятии и, тем более, в условиях виртуального предприятия связано с глубокими исследованиями разнообразных бизнес-процессов, составляющих жизненный цикл изделия, что требует специальных средств их описания и анализа. Для этого применяется методология моделирования IDEF , позволяющая исследовать структуру, параметры и характеристики процессов в производственно-технических и организационно-экономических системах. Общая методология IDEF состоит из частных методологий, основанных на графическом представлении систем:

    · IDEF0 для создания функциональной модели, отображающей процессы и функции системы, а также потоки информации и материальных объектов, преобразуемые этими функциями;

    · IDEF1 для построения информационной модели, отображающей структуру и содержание информационных потоков, необходимых для поддержки функций системы.

    Обе методологии получили в США статус федеральных стандартов, а сегодня ведется работа по их стандартизации и в России .

    Основу методологии IDEF0 составляет графический язык описания (моделирования) процессов. Базовыми элементами языка являются блоки, изображающие функции (операции, действия) в составе моделируемых процессов, и стрелки, изображающие информационные и материальные связи между блоками. С помощью блоков и стрелок составляются диаграммы, описывающие процессы, операции и действия. Каждый блок на любой диаграмме может быть подвергнут декомпозиции с целью более подробного раскрытия его содержания. Результатом декомпозиции является новая, дочерняя, диаграмма. Множество всех диаграмм образует собственно функциональную модель.

    Функциональная модель может иметь любую необходимую глубину декомпозиции, вплоть до описания действий, выполняемых отдельными специалистами на конкретных рабочих местах, с указанием условий выполнения и перечня используемых ресурсов.

    Описания бизнес-процессов в форме функциональных моделей имеют ряд преимуществ.

    · Модель является своеобразной «программой управления» персоналом, поскольку определяет, кто, при каких условиях и с использованием каких ресурсов выполняет те или иные функции.

    · Модель определяет материальные потоки и документооборот и позволяет установить регламенты обмена результатами различных процессов.

    · Модель служит методической основой для настройки прикладных программных систем.

    · Модель является удобным средством анализа, пригодным для поиска путей совершенствования организации и управления процессами.

    Кроме данных, относящихся к изделиям и бизнес-процессам, в интегрированной информационной системе должна содержаться информация о производственной и управленческой структуре, технологическом и вспомогательном оборудовании, персонале, финансах и т.д. Номенклатура этих данных хорошо известна специалистам, создающим и эксплуатирующим АСУП. С позиций методического единства можно считать, что в рамках концепции КСПИ эти данные должны быть организованы и управляемы средствами, аналогичными системам PDM.

    7. Преимущества, обеспечиваемые применением КСПИ

    Применение концепции КСПИ в процессах разработки, производства и эксплуатации продукции обеспечивает:

    · расширение области деятельности предприятий путем кооперации с другими предприятиями. Эффективность взаимодействия достигается стандартизацией способов представления информации на разных стадиях и этапах жизненного цикла и возможности ее последующего использования. Современные ИТ позволяют строить производственную кооперацию в форме «виртуальных предприятий». Становится возможной кооперация не только посредством поставки готовых компонентов, но и посредством выполнения отдельных этапов и задач в процессах проектирования, производства и эксплуатации;

    · повышение эффективности деятельности предприятий за счет использования информации, подготовленной партнерами; сокращения затрат на документооборот; преемственности результатов работы в комплексных проектах и возможности изменения состава участников без потери уже достигнутых результатов;

    · повышение «прозрачности» и «управляемости» бизнес-процессов, их анализа и реинжиниринга на основе функциональных моделей;

    · гарантию качества продукции.

    Литература

    компьютерный электронный документ изделие

    Компьютеризированные интегрированные производства и CALS-технологии в машиностроении. Под ред. д.т.н., проф. Б.И. Черпакова. ГУП «ВИМИ», М., 1999, 512 c.

    NATO CALS Handbook, 2000

    DEF-STAN-0060. Integrated Logistic Support, 1999

    ГОСТ Р 34.10-94 Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма

    ГОСТ Р 34.11-94 Информационная технология. Криптографическая защита информации. Функция хэширования

    Методология функционального моделирования. Рекомендации по стандартизации (Проект). М.: Госстандарт РФ. 2001

    Александр Громов, Мария Каменнова, Александр Старыгин. Управление бизнес-процессами на основе технологии Workflow. «Открытые системы», 1997, №1

    Размещено на Allbest.ru

    Подобные документы

      Описание жизненного цикла изделия. Анализ возможных видов отказов, их последствий и критичности, учет риска внезапных отказов. Разработка предложений по материально-техническому снабжению. Комплексные показатели надежности и логистической поддержки.

      курсовая работа , добавлен 22.09.2015

      Сущность процессного подхода. Этапы планирования жизненного цикла продукции. Анализ ассортимента и качества продукции предприятия, проведение маркетинговых исследований. Проектирование и разработка новых колбасных изделий, технология их производства.

      дипломная работа , добавлен 27.06.2012

      Изучение негативных экологических аспектов и опасных производственных факторов. Миссия и политика деятельности предприятия. Характеристика специальных процессов интегрированной системы менеджмента. Описание процесса "Планирование производства продукции".

      курсовая работа , добавлен 05.01.2013

      История производственного менеджмента. Функции, цели, производственная структура предприятия. Понятие жизненного цикла товара. Связь маркетинга и производства. Инновации и инновационный процесс. Конструкторская и технологическая подготовка производства.

      шпаргалка , добавлен 14.06.2010

      Основная концепция жизненного цикла предприятия. Методики для описания жизненного цикла предприятия. Оценка показателей экономической, финансовой, управленческой деятельности предприятия, особенности выбора стратегии его развития на соответствующем этапе.

      курсовая работа , добавлен 09.12.2009

      Концепция, основные стадии и виды жизненного цикла продукции. Особенности маркетинговых решений на разных этапах жизненного цикла. Анализ жизненного цикла продукции на примере компании "Сименс". Характеристика предприятия и выпускаемой продукции.

      курсовая работа , добавлен 26.10.2015

      Организация поточного производства и расчет основных параметров поточной линии. Расчет программы запуска изделий и трудоемкости по операциям техпроцесса. Определение хозрасчетного экономического эффекта от внедрения новой технологии производства изделия.

      курсовая работа , добавлен 05.01.2011

      Механизм управления организацией по стадиям ее жизненного цикла и направления его совершенствования. Один из вариантов деления жизненного цикла организации на соответствующие временные отрезки. Модель жизненного цикла Ларри Грейнера и Ицхака Адизеса.

      курсовая работа , добавлен 23.05.2015

      Организация основного производства. Понятие и классификация производственных процессов. Технологическая цепочка производства изделий. Расчет длительности производственного цикла простого процесса. Пути сокращения длительности производственных циклов.

      презентация , добавлен 06.11.2012

      Понятие и концепции моделей жизненного цикла организаций. Стратегии управления организацией на этапах жизненного цикла. Проблема формирования критериев определения стадии жизненного цикла. Возникновение, развитие, стагнация, возрождение организации.

    Машиностроение - это одна из самых главных отраслей промышленности в любом государстве. Степень ее развития определяет, насколько высок уровень экономики в той или иной стране. Технология машиностроения изучает изготовление машин и их деталей, технику безопасности при работе с оборудованием, а также возможность сократить себестоимость деталей и механизмов без ущерба для качества изготавливаемой продукции.

    Квалификация

    Специальность "Технология машиностроения" дает возможность получить квалификацию инженера, которая позволяет работать в многих направлениях. К примеру, техник-технолог машиностроения производит контроль качества выпускаемой продукции и выполняет необходимые расчеты. Станочник вытачивает детали на специальных станках вручную. Оператор работает на станках ЧПУ, вводит управляющую программу и задает режим ее работы. Инженер по наладке и испытаниям отвечает за исправность оборудования, ведет календарный график проведения осмотров и ремонтов, помогает станочникам настраивать станы и рассчитывает рекомендуемые настройки для работы на них. Он также отвечает за техническую документацию по оборудованию на его участке.

    Еще одно достаточно интересное направление, которое изучает специальность "Технология машиностроения" - это разработка новых деталей и оборудования. Как правило, этим занимается инженер-конструктор. На многих производствах массового типа существуют конструкторские бюро, которые занимаются разработкой новых деталей и режимов резания.

    К примеру, металлургическое предприятие получает заказ на огромную партию спиральных сверл. Оборудование позволяет производить лишь 10 тыс. сверл за смену и необходимо ускорить этот процесс. Инженер конструктор должен:

    1. Сделать чертеж готового изделия.
    2. Посчитать режим резания одной единицы спирального сверла.
    3. Найти способ ускорения изготовления данной детали с минимальными финансовыми расходами.

    Сколько времени и где обучаются на профессию инженера?

    Поступить на специальность "Технология машиностроения" можно на базе 9 или 11 классов. Срок обучения, соответственно, составляет 4 и 3 года, и по окончании, обучающийся получает среднее техническое образование. Для этой специальности существуют как бюджетные формы обучения, так и коммерческие. При желании, можно пойти учиться дальше по специальности на бакалавра и магистра.

    Специальность (15.02.08) "Технология машиностроения" можно получить в металлургических техникумах и колледжах. В зависимости от учебного заведения различаются и способы приема документов. В некоторых техникумах для поступления необходимо сдать экзамены.

    По данной специальности существуют также заочная и вечерняя форма обучения, однако, как правило, это коммерческие группы. Срок обучения для них такой же, как и на дневной форме. Многие парни и девушки мечтают получить специальность "Технология машиностроения". Колледж обучает и подготавливает таких специалистов согласно требованиям основной профессиональной образовательной программы.

    Учебный процесс

    Учебный процесс на базе 9 классов включает в себя 4 курса обучения. Поступившие после 11 класса, как правило, попадают сразу на II курс.

    I курс включает в себя общеобразовательные предметы и лишь базовые начальные знания по специальности. Закончив его, студент получает аттестат о базовом общем среднем образовании.

    II курс состоит из нескольких общеобразовательных предметов (таких как высшая математика, физика) и большинства предметов по специальности: металловедение, менеджмент, теория резания, техническая механика и др.

    III и IV курс состоит только из спец. предметов. Студенты изучают, электротехнику, специализированное оборудование, основы экологии, технические процессы изготовления машин и деталей, основы экономики и др.

    По окончании учебного процесса и прохождения практики учащиеся пишут дипломную работу и получают диплом.

    Практика по специальности "Технология машиностроения"

    Как правило, в течение всего учебного процесса нужно пройти 3 различные практики, связанные с профессией "Технология машиностроения". Специальность СПО (среднего профессионального образования) требует не только знаний, но и базовых навыков по работе с деталями и механизмами.)

    Первая практика - слесарная, и студенты допускаются к ней после окончания II курса. Кроме того, для допуска требуется сдать экзамен по технике безопасности. Слесарные мастерские, как правило, располагаются на территории учебного заведения. На этом этапе студенты впервые знакомятся с техническим оборудованием и пробуют на нем работать. В ходе практики учащимся необходимо сделать несколько заданий, таких как заточка резца, нарезание внутренней и наружной резьбы, выполнение разметки на деталях. Чаще всего студенты выполняют работу на слесарных верстаках и станках.

    Вторая практика у студентов на III курсе - механическая. Если на территории учебного заведения нет механического участка, тогда студенты проходят практику на заводах и предприятиях. Стандарт специальности "Технология машиностроения" на данном этапе требует изучения станков, таких как токарные, фрезерные, сверлильные, шлифовальные и пр. Студент закрепляется за одним из станков и вместе с наставником работает за ним. Допустимо проходить практику и на ЧПУ установках. В таком случае студент знакомится с управляющими программами и способом их ввода.

    Преддипломная практика

    На IV курсе учащихся ожидает преддипломная практика. Она длится около двух месяцев. Как правило, студентов распределяют на механических площадках в зависимости от темы диплома. К примеру, если учащемуся на факультете "Технология машиностроения" (специальность - "техник") была выдана тема «Расчет и проектирование червячной шлицевой фрезы», то его направляют на мех. участок, где изготавливаются фрезы. По окончании практики учащиеся сдают экзамен на разряд и получают свидетельство государственного образца о присвоении разряда.

    Электронное машиностроение

    В последнее время наша страна активно развивает отрасль промышленности по производству нового оборудования и техники. Не стоит на месте и развитие в такой области, как электронные технологии в машиностроении. Специальность современного инженера включает себя обязательные знания в этой сфере науки. Электронные технологии изучают электровакуумные устройства и механизмы. Они работают по принципу лампы накаливания: в рабочем пространстве такого прибора отсутствует воздух, что позволяет усиливать и преобразовывать электромагнитную энергию.

    Какие знания получают студенты в процессе обучения?

    Специальность "Технология машиностроения" дает возможность работать во многих направлениях. Это связано с тем, что в течение обучения техник получает огромный багаж необходимых знаний. Во время учебного процесса студенты изучают способы обработки деталей, учатся рассчитывать время на изготовление, выбирать необходимый режим резания, изучают оборудование на механических участках и принцип его работы. Кроме этого, молодых специалистов обучают работать в многих компьютерных программах, таких как "Компас" и AutoCAD. Это универсальные приложения для создания и проектирования любых приспособлений и деталей в системе трёхмерного моделирования.

    Перспективы в работе

    Сложно вспомнить время, когда хорошие инженеры были невостребованы. На любом промышленном предприятии всегда требуются квалифицированные технологи, знающие специальность "Технология машиностроения". Кем можно работать с такой профессией, знает каждый, кто хоть раз сталкивался с промышленными предприятиями. Работа молодого инженера, как правило, начинается с изготовления деталей на станках и верстатках. Со временем можно продвинуться по службе - стать мастером участка, на котором изготавливается деталь, или же и во все перевестись работать из пыльного цеха в чистый офис. Офисные технологи - это конструкторы и инженеры по внедрению новой техники и оборудования.

    Компьютерное интегрированное производство

    Компьютерное интегрированное производство (CIM - Computerintegratedmanufacturing) появилось в начале 90-хгодов. Такое производство обеспечивалось комплектом компьютерных систем САПР, обеспечивающих автоматизацию проектирования на всех этапах жизненного цикла машиностроительного изделия.

    Этап I. Разработка технологического задания и согласование его с заказчиком.

    Этап II. Разработка конструкторской документации.

    Этап III. Выполнение технических расчетов.

    Этап IV. Разработка технологической документации.

    Этап V. Разработка комплекта программ для станков с ЧПУ.

    Этап VI. Изготовление деталей и сборка узлов.

    Этап VII. Сборка изделия в целом.

    Этап VIII. Упаковка и транспортировка.

    Этап IX. Проведение технологического обслуживания изделия.

    Этап X. Утилизация.

    В настоящее время для обозначения компьютерных систем, обеспечивающих автоматизированное проектирование, используется термин CAD-CAM-CAE-CAPP-PDM-ERP. Это сложное название состоит из аббревиатур, каждая из которых обозначает определенный вид системы.

    ü CAD - computer aided design (проектирование);

    ü CAM - computer automated manufacturing (производство);

    ü CAE - computer aided engineering (техническиерасчеты);

    ü СAPP - computeraidedprocessplanning (планирование технологических процессов);

    ü PDM - productdatamanagement (управление информационными потоками об изделиях);

    ü ERP - enterpriseresourceplanning (система планирования ресурсов предприятия);

    Этап проектирования конструкторской документации (CAD)

    Компьютерные системы для автоматизации проектных работ этого этапа появились и стали широко использоваться вместе с появлением персональных компьютеров в 80-е годы. Уже в самом начале эти системы разделились на два направления: параметрические и непараметрические.

    В непараметрических системах привязка всех элементов чертежа, отрезков прямых, окружностей и дуг окружностей, выполнялась на основе координатной сетки системы. Её можно было увеличить или уменьшить, отобразив в том или ином масштабе. Самой яркой непараметрической системой является AutoCAD.

    Рассмотрим принцип формирования непараметрического чертежа на простом примере.

    Рисунок 4 - Представление чертежа в разных системах:а) непараметрическая;

    б) параметрическая


    Непараметрическая система:

    ArcI5J5; X2Y2; X3Y3

    Параметрическаясистема:

    Line L3 PAR L1 l1

    Line L4 PAR L2 l2

    Circle C1 TL3 AL4 r1

    K1 P1 TL2 TL3 TC1 AL4 AL1 P1


    Обозначения в командах: Line–прямая линия, Arc – дуга окружности,

    P – точка, L – обозначение прямой линии, HOR–горизонтально, VERвертикально, PAR– параллельно, Circle– окружность, С – обозначение окружности, T – совпадение направления, A – противоположное направление, K– контур.

    Положительным направлением для прямых считается «слева направо» и «снизу вверх» (как в координатных осях), положительным направлением для окружности считается «по часовой стрелке».

    Пример описания команд:

    LineL3 PARL1 l1 – линия L3 строится параллельно L1 на расстоянии l1.

    K1 P1 TL2 TL3 TC1 AL4 AL1 P1 контур K1 начинается из точки P1, идет по положительному направлениюлинии L2, затем L3, затем по окружности C1, затем по линии L4 в направлении, противоположном положительному направлению самой линии,затем по линии L1, также в противоположном направлении, и заканчивается в точке P1.

    Для привязки отрезка прямой необходимо иметь 2 точки. Для привязки дуги окружности - 3 точки, а окружности - точку и радиус.

    При выполнении геометрических построений система предложит несколько способов выполнения прямых и окружностей. После образования всей геометрии, элементы построения будут зафиксированы с помощью своих граничных точек.

    В параметрических системах используется принципиально другой подход. Здесь также имеется базовая система координат, но к этой системе привязываются не все элементы чертежа, а только одна точка.

    Любые механизмы, которыми мы пользуемся в повседневной жизни, состоят из простых или сложных деталей и соединений. Все они являются продукцией машиностроения - области народного хозяйства, которая занимается производством разнообразных механизмов и машин. Технология машиностроения - это специальность, позволяющая овладеть знаниями и навыками, позволяющими работать в машиностроительной отрасли.

    Начало развития этого направления народного хозяйства в нашей стране принято связывать с именем который еще в 18 веке изобрел первый русский токарный станок. В то время инженерами были единицы, в основном энтузиасты и первопроходцы своего дела. Но основной стимул для развития технология машиностроения получила во многом благодаря войнам 19 и 20 века, когда зачастую от технического оснащения войска зависела победа. Для России расцвет машиностроения пришелся на период второй мировой войны, когда практически все предприятия страны стали выпускать оружие, боеприпасы и технику. И именно в это время оказалась крайне "технология машиностроения", так как заводы испытывали острую нехватку квалифицированных и грамотных инженеров.

    К сожалению, в настоящее время машиностроение также развивается благодаря соревнованию между странами на самые лучшие оружие и систему обороны.

    Технология машиностроения - специальность, которая остается востребованной: каждый год на одно бюджетное место претендует не меньше 4 человек. Стоит отметить, что инженеров обучают только государственные вузы и техникумы, для коммерческих организаций это специальность является слишком дорогостоящей. Технология машиностроения требует наличия в образовательных учреждениях специального разных типов), лабораторий, компьютеров со специальными программами - для разработки чертежей, создания 3Д-моделей и т.п. Именно поэтому негосударственные учебные учреждения не могут конкурировать с государственными вузами, которые имеют хорошую материальную базу, штат высококвалифицированных преподавателей (многие из которых кандидаты и доктора наук) и многолетние традиции обучения.

    Сегодня на функции инженера-технолога значительно изменились. На заводах повсеместно внедрены автоматические линии, станки с ЧПУ, оборудование, напрямую управляемое от компьютера, системы автоматизированного проектирования. Все это привело к тому, что инженеры должны на высоком уровне владеть компьютерными технологиями. При таком уровне автоматизации инженер-технолог может контролировать весь от разработки чертежа изделия до испытания уже готовой Технология машиностроения - быстро развивающаяся и изменяющаяся специальность, которая постоянно подстраивается под новые технологии, появляющиеся в производстве. Поэтому студентам, выбравшим это профессию, необходимо знать, что учиться придется не только до получения диплома - инженеры всю жизнь должны повышать свою квалификацию.

    Машиностроение - «кит», на котором стоит по большей части вся промышленность практически любой страны, в этом числе и России. Для такого крупного государства как наше машиностроение является отраслью, определяющей уровень и пути развития всей экономики.

    Специальность машиностроение делится на авиастроение, судостроение, автомобилестроение, энергетическое машиностроение, станкостроение и даже производство сельскохозяйственной техники.

    Прежде чем окончательно остановить свой выбор на профиле машиностроения или технологии машиностроения следует проанализировать свои желания и возможности.

    Необходимо оценить умения в математике и физике, необходимо осознать, насколько интересно будет посвятить большую часть времени процессу черчения.

    Поступив на первый курс института или техникума, первым делом начинающий машиностроитель приступит в изучению начертательной геометрии, сопромата, теормеха, теплотехники, физики.

    После первого курса отчисляются студенты, не выдержавшие испытание линейки и карандаша, поэтому чтобы не потерять впустую год своей жизни стоит уделить внимание особенностям выбранной специальности, сделав выводы.

    Если сопромат, черчение и физика – не являются словами, вызывающими страх и трепет, можно смело подавать документы в машиностроительный вуз.

    Технология машиностроения специальность

    Специальность технология машиностроения в общероссийском классификаторе специальностей обозначена под кодом 151901, по окончанию вуза дает право носить статус инженера, открывает перспективы по различным направлениям.

    Технология машиностроения специальность техник, техник-технолог машиностроения – специалист, который контролирует качество производимой предприятием продукции и отвечает за выполнение всех связанных с этим необходимых расчетов. А вот станочник стоит за станком и вручную вытачивает детали.

    Существует должность оператора станка ЧПУ, где сотрудник только задает команду программе, а уже она делает всю работу автоматически.

    Инженер по наладке и испытаниям следит за исправностью оборудования на предприятии, несет ответственность за планировку и проведение ремонта, осуществляет помощь станочникам в настройке станков, а также ведет расчет рекомендуемых настроек станков. Кроме того, за инженером закреплена обязанность, заключающаяся в оформлении технической и нормативной документации по оборудованию, которое попадает в его зону ответственности.

    Специальность "Технология машиностроения" помимо прочего изучает методы усовершенствования деталей и оборудования. Все это обязанности инженера-конструктора. Многие промышленные предприятия имеют свое конструкторское бюро, в котором инженеры-конструкторы отвечают за изобретение новых видов конструкций для машиностроения.

    Технология машиностроения специальность СПО

    Закончив специальность 15.02.08 технология машиностроения, кстати, это можно сделать как после средней школы, так и после основной, на руках останется диплом среднего профессионального образования. Специальность технология машиностроения – колледж или машиностроительный или металлургический техникум – учебные заведения, которые позволяют получить желаемое образование.

    Учебная практика по специальности технология машиностроения

    Во время практики учебное заведение предоставит возможность ознакомиться с будущей профессией вплотную. Лицом к лицу студент на втором курсе столкнется со слесарным делом, а на третьем курсе пройдет механическую практику, где впервые станет за станок, попробует то, с чем придется иметь дело всю жизнь.

    Машиностроение специальность - ВУЗы

    Известно, что существует общероссийская классификация специальностей, согласно которой код специальности машиностроение – 150700. Окончить обучение по профилю можно в любом технологическом вузе. Пятерку самых престижных вузов в машиностроении открывает Московский технологический университет (МИРЭА , МГУПИ , МИТХТ ). Следующую позицию в рейтинге занимают Московский государственный машиностроительный университет (МАМИ ) и Московский государственный технологический университет «СТАНКИН ». На этом варианты для поступления по специальности машиностроение не ограничиваются. Почти каждый город может похвастаться наличием технического вуза.

    Особенность состоит в специфике каждого региона. Так, в Сибири в машиностроительных вузах делают упор на сферу добывающей и обрабатывающей промышленности, а, например, Центральный федеральный округ ориентирован на конструирование и эксплуатацию машин в авиастроении, создании космической техники, двигателестроении, автомобилестроении, станкостроении. Одним словом, в каждом регионе - собственная специфика.

    По окончании четырех курсов обучения, сдачи госэкзаменов и, традиционно, защиты выпускной работы студент получает диплом о присвоении ему квалификации бакалавра. При желании возможно продолжать повышать уровень своего образования в магистратуре.

    Работа по специальности машиностроение

    Освоив специальность машиностроение, «кем работать?» возникает правомерный вопрос у каждого выпускника. Преимущество образования в сфере машиностроения в наличии огромного количества вакансий в любом городе, лишь бы были знания и желание работать по специальности. Кроме того, особенностью такого технического образования является то, что выпускник машиностроительного вуза без преувеличений сможет работать в совершенно разных сферах и направлениях из-за огромной базы полученных знаний и широкого круга изученных дисциплин.

    Выпускники бакалавриата найдут себе работу в должности технолога, техника или младшего инженера на предприятиях машиностроительного комплекса. По большей части отвечают они за безопасность на предприятии, контролируют соблюдение технологий, руководят работой младших сотрудников, отвечают за соблюдение всех норм и регламентов на предприятии, ответственны за ремонт оборудования.

    Специальность машиностроение довольно общее понятие, поэтому вопрос о зарплате довольно неоднозначен. Как известно, отрасли промышленности в России находятся на разных этапах развития, в соответствии с этим и заработные платы на предприятиях кардинально разные.

    В России сегодня наиболее оплачиваемым трудом является сфера добывающей промышленности (нефтяная и газовая). Надежду на успешную карьеру и достойную оплату труда дают автоконцерны, где выпускники могут занимать должность механика или наладчика оборудования.

    Работа по специальности технология машиностроения

    Специальность достаточно перспективна, предлагает массу возможностей для реализации, так как связана с изобретением новых методик, внедрением новейших технологий на предприятии и с разработкой усовершенствованных деталей и оборудования.

    Основными профессиями для выпускника, окончившего машиностроительный институт по специальности технология машиностроения, являются профессии инженера-технолога, инженера-конструктора, мастера, начальника цеха или производства, менеджера по продаже инструмента и оборудования, и многие другие.